bannerb

This version of SWEHB is associated with NPR 7150.2B. Click for the latest version of the SWEHB based on NPR7150.2C

SWE-095 - Report Engineering Discipline Status

1. Requirements

2.1.3.7 The Center Director or designee shall periodically report on the status of the Center’s software engineering discipline as applied to its projects, to the NASA Office of Chief Engineer and relevant Technical Authorities as requested.

1.1 Notes

NPR 7150.2, NASA Software Engineering Requirements, does not include any notes for this requirement.

2. Rationale

The intent of the requirement is for the Centers to allow the NASA Office of the Chief Engineer (OCE) and relevant Technical Authorities (TA) to assess the status of NASA software improvement initiatives, measurement data, and workforce data, to address internal and external questions asked of the software community, to identify efficiencies in software engineering workflows, to facilitate collaboration between Centers, and to address Agency cost savings studies and questions.

3. Guidance

In addition to the reporting and access requirements for measurement data at the Center level described in SWE-094, periodic Agency-level reporting of the status of the Center’s software engineering discipline as applied to its projects is also required.  This data may be requested by the NASA OCE or relevant TAs to help them obtain high level views of the Agency’s software engineering discipline.

Typically requests, made once or twice each year, can be expected to include:

  • Project NPR 7150 compliance matrices.
  • CMMI assessment status, schedule and findings.
  • Contractor CMMI assessment status, schedule and finding.
  • NPR issues and suggestions.
  • Training status.
  • Software organization improvement goals and metrics.
  • Software metrics.
  • Project status and risks.

Responses to NASA OCE or relevant TAs can take the form of email, face-to-face meetings, presentations, spreadsheets, reports, or any other format that provides the requested information in a manner that the OCE or TA can understand the data being provided.  If a specific format is desired, the OCE representative or TA will include that information in the request.

Additional guidance related to measurement systems, data, and their relationship to status reporting may be found in the following related requirement in this Handbook:

SWE-091

Establish and Maintain Measurement Repository

SWE-094

Access to Measurement Data



4. Small Projects

No additional guidance is available for small projects.

5. Resources

5.1 Tools

Tools relative to this SWE may be found in the table below. You may wish to reference the Tools Table in this handbook for an evolving list of these and other tools in use at NASA. Note that this table should not be considered all-inclusive, nor is it an endorsement of any particular tool. Check with your Center to see what tools are available to facilitate compliance with this requirement.

Tool nameTypeOwner/SourceLinkDescriptionUser

JIRA

COTS

Atlassian

http://www.atlassian.com/software/jira ...

JIRA provides issue tracking and project tracking for software development teams to improve code quality and the speed of development. It combines a clean, fast interface for capturing and organizing issues with customizable workflows, OpenSocial dashboards, and a pluggable integration framework. You can start with Atlassian software for $10. JIRA is used for issue tracking and project management by over 14,500 organizations.

GRC, JPL, GSFC, ARC

6. Lessons Learned

  • Selection and use of Software Metrics for Software Development Projects, Lesson No. 3556: "The design, development, and sustaining support of Launch Processing System (LPS) application software for the Space Shuttle Program provide the driving event behind this lesson.

"Metrics or measurements should be used to provide visibility into a software project's status during all phases of the software development life cycle in order to facilitate an efficient and successful project."  The Recommendation states that "As early as possible in the planning stages of a software project, perform an analysis to determine what measures or metrics will used to identify the 'health' or hindrances (risks) to the project. Because collection and analysis of metrics require additional resources, select measures that are tailored and applicable to the unique characteristics of the software project, and use them only if efficiencies in the project can be realized as a result. The following are examples of useful metrics:

    • "The number of software requirement changes (added/deleted/modified) during each phase of the software process (e.g., design, development, testing).
    • "The number of errors found during software verification/validation.
    • "The number of errors found in delivered software (a.k.a., 'process escapes').
    • "Projected versus actual labor hours expended.
    • "Projected versus actual lines of code, and the number of function points in delivered software. 577


  • Flight Software Engineering Lessons, Lesson No. 2218: "The engineering of flight software (FSW) for a typical NASA/Caltech Jet Propulsion Laboratory (JPL) spacecraft is a major consideration in establishing the total project cost and schedule because every mission requires a significant amount of new software to implement new spacecraft functionality."

The lesson learned Recommendation No. 8 provides this step as well as other steps to mitigate the risk from defects in the Flight Software (FSW) development process:

"Use objective measures to monitor FSW development progress and to determine the adequacy of software verification activities. To reliably assess FSW production and quality, these measures should include metrics such as the percentage of code, requirements, and defined faults tested, and the percentage of tests passed in both simulation and test bed environments. These measures should also identify the number of units where both the allocated requirements and the detailed design have been baselined, where coding has been completed and successfully passed all unit tests in both the simulated and test bed environments, and where they have successfully passed all stress tests." 572

  • No labels