Book A.

Book B.
7150 Requirements Guidance

Book C.

References, & Terms

(NASA Only)

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migration of unmigrated content due to installation of a new plugin



1. Requirements The project shall require the software supplier(s) to provide software metric data as defined in the project's Software Metrics Report.

1.1 Notes

The requirement for the content of a Software Metrics Report is defined in Chapter 5 [section 5.3.1 of NPR 7150.2, NASA Software Engineering Requirements].

1.2 Applicability Across Classes

Class D and Not Safety Critical and Class G are labeled with "P (Center)." This means that an approved Center-defined process which meets a non-empty subset of the full requirement can be used to achieve this requirement.



2. Rationale

The software development team needs to acquire software metrics data in a timely and periodic manner to assure the effectiveness of the insight and oversight activities being performed by NASA. The specification of those metrics, and when they are due, is effectively accomplished by identifying them in the software acquisition contract statement of work (SOW) clauses and instructions (see SWE-048). Effective insight and oversight of the software development by the NASA software development team is achieved by obtaining and reviewing these metrics and making decisions based on them.



3. Guidance

This is a key requirement that must be addressed on all NASA software projects. Access needs to be defined up front in the SOW, task agreement, software plans or other assignment paperwork. Special care needs to be used to clearly identify this requirement in the in-house documentation, primary contractor and subcontractor requirements. NASA needs direct insight into software metrics on NASA software projects.


Measurement is a key process area for successful management and is applied to all engineering disciplines. Measurement helps to define and implement more realistic plans, as well as monitor progress against those plans. Measurement data provides objective information that helps project management perform the following.

  • More accurately plan a project or program that is similar to one that has been completed.
  • Identify and correct problems early in the life cycle (more proactive than reactive).
  • Assess impact of problems that relate to project or program objectives.
  • Make proper decisions that best meet program objectives.
  • Defend and justify decisions.

Software metrics are typically used for estimation (i.e., size, effort, and cost), productivity measurements, reliability measurements, quality measurements, and project and task management. A metric quantifies a characteristic of a process or product and defines what is to be measured. They help in managing and controlling software projects and learning more about the way the organization operates and performs. Metrics are also a tool that highlights potential problems or deficiencies in the development process or in the products themselves. They provide quantitative and qualitative measures that help focus management's attention and resources, if necessary, on the prevention and/or correction of problems.


A successful process for measurements is characterized by decision making that regularly includes data analyses results that are based on objective measurement. To ensure successful implementation of a project measurement process the following activities are needed.

  • Organizational goals/objectives are defined/changed.
  • Information needs for the measurement activities are identified and planned.
  • An appropriate set of measures driven by organizational objectives are derived.
  • Required data is collected, stored, analyzed and reported.
  • Indicators are used to provide an objective basis for decision making.
  • Measurement processes and measures are tracked and evaluated.
  • Improvements and best practices are captured and communicated to determine if modifications to (goals/metrics/strategy) are required.


Image Removed

                              Figure 3.1 Software Metric Process Flow


It is often difficult to accurately understand the status of a project or determine how well development processes are working without some measures of current performance and a baseline for comparison purposes. Metrics support better management and control of software projects and work to establish greater insight into the way the organization is operating. There are four major reasons for measuring software processes, products, and resources. They are to Characterize, Evaluate, Predict, and Improve.

  1. Characterizations are performed to gain understanding of processes, products, resources, and environments, and to establish baselines for comparisons with future efforts.
  1. Evaluation is used to determine status with respect to plans. Measures are the signals that provide knowledge and awareness when projects and processes are drifting off track, so that they are brought back under control. Evaluations are also used to assess achievement of quality goals and to assess impacts of technology and process improvements on products and processes.
  1. Predictions are made so that planning is performed more proactively. Measuring for prediction involves gaining an understanding of the relationships among processes and products so that the values observed for some attributes are used to predict others. This is accomplished because of a desire to establish achievable goals for cost, schedule, and quality so that appropriate resources are applied and managed. Projections and estimates based on historical data help analyze risks and support design and cost tradeoffs.
  1. An organization measures to improve when quantitative data and information is gathered to help identify inefficiencies and opportunities for improving product quality and process performance. Measures help to plan and track improvement efforts. Measures of current performance give baselines to compare against, so that an organization can determine if the improvement actions are working as intended. Good measures also help to communicate goals and convey reasons for improving.

Measurement is an important component of any project and product development effort. It is applied to all facets of software development and engineering disciplines. Before a process can be efficiently managed and controlled, it has to be measured.

The content of Software Metrics Report, section 5.3.1 of NPR 7150.2, (see SWE-117), is set up as a common approach to collecting and reporting software metrics. It requires that metrics information be reported on a CSCI (Computer Software Configuration Item) basis. All NASA software development follows some level of defined software processes. The reporting processes used in a software development activity can be derived from a set of common processes defined at the Agency level, Center level or organizational level. As a minimum, for which ever processes are used, the following reporting categories shown in SWE-117 are required for summarizing and organizing the minimum information needed:

Software progress tracking.

Software functionality.

Software quality.

Software requirements volatility.

Software characteristics.

The NASA approach to contractor-developed software work products requires that contractor terms and deliverables be explicitly listed in the contract SOW. To be most effective this includes the software metrics list required to effectively manage the insight and oversight activities. This requirement is levied on the contractor as a provision in the software acquisition agreement or contract SOW.

Additional guidance related to software measurement determination, collection, analysis, and reporting may be found in the following related requirements in this handbook:




Measurement Objectives




Measurement Selection




Measurement Collection and Storage




Analysis of Measurement Data




Reporting of Measurement Analysis




Directorate Measurement System




Directorate Measurement Objectives




Software Metrics Report

Examples of software metrics

Image Removed

                              Table 3.1 Software Metric Examples


4. Small Projects

No additional guidance is available for small projects. The community of practice is encouraged to submit guidance candidates for this paragraph.



5. Resources





6. Lessons Learned

 The NASA Lessons Learned database contains the following lessons learned related to software metrics: