
 NASA Software Engineering Handbook

1 Section:

NASA Software Engineering Handbook
Supplement to the NASA Procedural Requirement (NPR) 7150.2A

National Aeronautics and Space Administration

DRAFT: Release version 0.1C | March 5, 2011

NASA Software Engineering Handbook

Section: 2

Table of Contents

1. Introduction ... 4
How is this different than any other NASA handbook? ... 4

Gateway to Web Handbook ... 4

Special Topic Material.. 4

Material by SWE Requirement Number ... 5

What„s in Release 0.1C? .. 5

Contributors ... 5

2. Lifecycle Review Entry/Exit Criteria Guidance ... 6
Mission Concept Review (MCR) .. 6

Systems Requirements Review (SRR) .. 7

Software Requirements Review (SwRR).. 8

Mission Definition Review (MDR) ... 10

System Definition Review (SDR) ... 12

Preliminary Design Review (PDR) ... 13

Critical Design Review (CDR) .. 17

Production Readiness Review (PRR) .. 20

System Integration Review (SIR) ... 21

Test Readiness Review (TRR) ... 22

System Acceptance Review (SAR) .. 25

Operational Readiness Review (ORR) ... 25

Flight Readiness Review (FRR) ... 28

3. Use of Commercial, Government, Legacy Software .. 29
Requirements .. 29

Guidance ... 29

Rationale ... 29

COTS/GOTS Software ... 30

MOTS Software ... 31

Legacy/Heritage Code ... 32

Open Source Software ... 33

Embedded Open Source Software... 36

References .. 37

Lessons Learned with COTS, GOTS, MOTS, Reused, or OSS ... 40

4. Software Acquisition .. 46
Purpose ... 46

Roles ... 46

Planning .. 46

Solicitation, Selection, Award ... 48

Monitoring and Quality Assurance ... 50

Contract Administration .. 51

Product Acceptance and Control ... 52

Contract Close-Out .. 52

Useful Tools ... 53

 NASA Software Engineering Handbook

3 Section:

References .. 59

5. Transition of Software to a Higher Classification .. 60
Purpose ... 60

Roles ... 60

Transition Categories ... 60

Preparation .. 60

Process Overview .. 61

Determine Preliminary Transition Risk ... 61

Determine Requirements Gap ... 62

Determine Transition Strategy ... 62

References .. 66

6. Validation Planning - SWE-029 .. 68
Requirements .. 68

Notes ... 68

Implementation Notes from Appendix D ... 68

Applicability Across Classes .. 68

Rationale ... 68

Guidance ... 69

Small Projects .. 71

Resources ... 71

Tools .. 71

Lessons Learned ... 71

7. Acquisition vs. Development Assessment - SWE-033 .. 72
Requirements .. 72

Rationale ... 72

Guidance ... 72

Resources ... 74

Lessons Learned ... 74

NASA Software Engineering Handbook

Section: Introduction 4

Gateway to Web Handbook

EXAMPLE

This handbook is interactive!
Click on the links below to
connect to the web features:

 View this section on Web
 Comment on this section
 View this section‟s tags

 Download PDF of only this

section (smaller file)

1. Introduction

We are glad you have come to the NASA
Software Engineering Handbook site. The
purpose of this site is to provide key insights
to you, a Software Engineering professional.
We plan on two phases of release: the first
with 30% material in February 2011, and with
80% material in October 2011.

To view a presentation that was given on the
handbook development to the Software
Engineering Working Group in August 2010,
click here .

HOW IS THIS DIFFERENT THAN ANY

OTHER NASA HANDBOOK?

The Software Engineering handbook will have
two components. The first is a PDF/printable
version for those who wish to use the
material in a more traditional way, which you
are reading right now. We are also
developing this web version as an interactive
and dynamic version of the same material.
We plan on utilizing web technologies, such
as tagging (folksonomies), social
commenting, and web editability and
versioning to enhance the experience of
what a paperback handbook provides.

The web version is available at
http://nasa7150.onconfluence.com and will
be moved to a NASA.gov domain by the Fall
2011 Software Working Group Face to Face.

On the web, we are already accepting
comments at the very bottom of this page.
You may leave an anonymous comment, but
please use responsibly and according to the
Code of Conduct.

GATEWAY TO WEB HANDBOOK
Each section of this draft handbook has a

Gateway to Web Handbook bubble in the

right hand corner of the first page.

Eventually, every bulletted item in the bubble

will be a link as the each name indicates. But

for now only the first link works, which is the

View this section on Web. If you click on this

link you can view the material on the NASA

Software Engineering Handbook Website

(powered by the 7150 Wiki).

SPECIAL TOPIC MATERIAL
There are a total of 37 special topics which
will be chapters within the handbook. A
partial list is as follows:

7.1 - 7150.2A Definitions & References, 7.2 -
Classification Tool and Safety Critical Assessment Tool,
7.3 - Lifecycle Management, 7.4 - Entrance / Exit
Criteria for 7150.2A, 7.5 - Documentation Products
Maturity (List of material maturity by phase of
mission), 7.6-8 - 7150.2A's Traceability to Other NPRs,
7.9 - Software Acquisition, 7.11 - Use of COTS, GOTS,
MOTS, 7.12 - Flow down of NPR requirements on
contracts and to other centers in multi center projects,
7.16 - Transitioning to a higher class, 7.17 -
Explanation of enforcement of NPR requirements,
7.18 - Compliance matrices

http://nasa7150.onconfluence.com/display/7150/Entrance+and+Exit+Criteria
http://nasa7150.onconfluence.com/download/attachments/622594/7150handbook-swgf2f-_jonv_REV-C.ppt?version=1&modificationDate=1288386901056
http://nasa7150.onconfluence.com/
http://nasa7150.onconfluence.com/pages/viewpage.action?pageId=2425045
http://nasa7150.onconfluence.com/download/attachments/622594/7150handbook-swgf2f-_jonv_REV-C.ppt?version=1&modificationDate=1288386901056

 NASA Software Engineering Handbook

5 Section: Introduction

MATERIAL BY SWE REQUIREMENT NUMBER

The NASA Software Engineering standards are laid out in the NPR 7150.2A document (click here to
view it on the web). Within the document, there are requirements numbering up to 130. We
will be producing material for each of these requirements in the following areas: Guidance,
Rationale, Tools Available, Links, and Guidance for Small Project.

WHAT‘S IN RELEASE 0.1C?
Correlating with John Kelly‟s email the week before the Software Working Group Face to Face
(March 1-3, 2011), these are the sections of the handbook which are ready for review and have
been incorporated into this document.

Title from John Kelly Email Correlating Chapter (in this Document)

1. Session 1 E&E SSC F2F 3-1-2011 V1.0.ppt Chapter 3
2. Use of Commercial, Government, Legacy.pptx Chapter 4
3. F2F_Criteria_Pitch_DJG_2011Feb18.ppt Chapter 3
4. SWG F2F Presentation on Acquisition_w notes_20110221.ppt Chapter 5
5. SWG F2F Presentation on Entry-Exit_w notes_20110224.ppt Chapter 3
6. SWG F2F Presentation on Transition_w notes_20110128.ppt Chapter 6
7. SWE-029 Validation Planning Chapter 7
8. SWE-033 Acquisition Assessment Chapter 8

CONTRIBUTORS
Many have contributed to this early draft of the Software Engineering Handbook. They are as
follows:

John Kelly

Kevin Carmichael

Dave York

Kathy Malnick

Tommy Tayman

Lee Jackson

Jon Verville

Dan Gauntner

Also, special thanks to the members of the NASA Software Working Group (NSWG) for input,

review, and contributions.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 6

Gateway to Web Handbook

Prototype: only the top link
works (view section on web)

This handbook is interactive!
Click on the links below to
connect to the web features:

 View this section on Web
 Comment on this section
 View this section‟s tags

 Download PDF of only this

section (smaller file)

2. Lifecycle Review Entry/Exit Criteria Guidance

This section identifies criteria for the entrance into and the
successful completion of one of the 13 lifecycle reviews from NPR
7123.1 Appendix G. It is organized by the 13 reviews chosen and
includes the following information: entrance criteria, exit criteria,
software community responsibilities (e.g., SDP/SMP), software
community contributions to system activities/products (e.g.,
Project Plan).

Material was also added and adapted from these other sources:

 NPR 7120.5D (NM 7120-81)

 Center documents & PALs: ARC, JPL, GSFC, MSFC, SSC

 Defense Acquisition Guidebook

Notes: The software requirements review (SwRR) is not included in 7123.1, but is often used in software projects, so it is included
here. The following reviews were not included because they did not have any apparent correlation to 7150.2A: Program/System
Requirements Review, Program/System Definition Review, Post-Launch Assessment Review, Critical Event Readiness Review, Post-
Flight Assessment Review, Decommission Review, Periodic Technical Review. (Tables G-1,2,15-19)

MISSION CONCEPT REVIEW (MCR)

Entrance Criteria
 Need for mission clearly identified
 Mission goals and objectives clearly

defined and stated; unambiguous and
internally consistent

 Analysis of alternative concepts (showing
at least one feasible)

 Concept of operations
 Preliminary risk assessment, including

technologies and associated risk
management/mitigation strategies and
options

 Conceptual test and evaluation strategy
 Preliminary technical plans to achieve

next phase
 Conceptual life-cycle
 Preliminary Software Management Plan

(SMP)
 The preliminary set of requirements to

meet the mission objectives
 The mission is feasible

 A solution has been identified
that is technically feasible

 A rough cost estimate is within
an acceptable cost range

 The cost and schedule estimates are
credible

 An updated technical search was done to
identify existing assets or products that
could satisfy the mission or parts of the
mission

Exit/Success Criteria
 Technical planning is sufficient to

proceed to the next phase
 Risk and mitigation strategies have been

identified and are acceptable based on
technical risk assessments

 As applicable,
 Science objectives are clearly

understood and comprehensively
defined

 Preliminary mission requirements
are traceable to science
objectives

http://nasa7150.onconfluence.com/display/7150/Entrance+and+Exit+Criteria

 NASA Software Engineering Handbook

7 Section: Lifecycle Review Entry/Exit Criteria Guidance

 Operations concept clearly
supports achievement of science
objectives

 Conceptual system design meets mission
requirements, and the various system
elements are compatible

 Technology dependencies are
understood, and alternative strategies for
achievement of requirements are
understood

 Conceptual system design meets mission
requirements, and the various system
elements are compatible

 Technology dependencies are
understood, and alternative strategies for
achievement of requirements are
understood

SYSTEMS REQUIREMENTS REVIEW

(SRR)

Entrance Criteria
 Successful completion of the MCR and

responses made to all MCR Requests for
Actions (RFAs) and Review Item
Discrepancies (RIDs)

 A preliminary SRR agenda, success
criteria, and charge to the board have
been agreed to by the technical team,
project manager, and review chair

 Technical products made available to
participants prior to SRR (noted in this
list)

 System requirements document
 Preliminary system requirements

allocation to next lower level system
 System software functionality description
 Updated concept of operations
 Updated mission requirements, if

applicable
 Software inputs / contributions to

 Baselined Systems Engineering
Management Plan (SEMP)

 Preliminary Project Plan

 System safety and mission
assurance plan

 Risk management plan

 Updated risk assessment
and mitigations
(including Probabilistic
Risk Assessment (PRA) as
applicable)

 Technology Development
Maturity Assessment Plan

 Logistics documentation (e.g.,
preliminary maintenance plan)

 Preliminary human rating plan, if
applicable

 Initial document tree
 Lessons Learned

 Review of existing Lessons
Learned from previous projects

 Lessons Learned captured from
software areas of the project;
indicate the problem or success
that generated the Lesson
Learned, what the Lesson
Learned was, and its applicability
to future projects

 Confirmation that Lessons
Learned added to Lessons
Learned database

Exit/Success Criteria
 Process for allocation and control of

requirements throughout all levels
deemed sound; plan defined to complete
the definition activity within schedule
constraints

 Requirements definition is complete with
respect to top-level mission and science
requirements; interfaces with external
entities and between major internal
elements have been defined

 Requirements allocation and flow down
of key driving requirements defined
down to subsystems

 Preliminary allocation of system
requirements to hardware, human, and
software subsystems

 Preliminary approaches determined for
how requirements will be verified and
validated down to the subsystem level

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 8

 Major risks identified and technically
assessed, and viable mitigation strategies
defined

 Requirements and selected concept will
satisfy the mission

 System requirements, approved material
solution, available product/process
technology, and program resources form
a satisfactory basis for proceeding into
the development phase

SOFTWARE REQUIREMENTS REVIEW

(SWRR)

Entrance Criteria
 Successful completion of the SRR and

responses made to all SRR Requests for
Actions (RFAs) and Review Item
Discrepancies (RIDs)

 A preliminary SwRR agenda, success
criteria, and charge to the board have
been agreed to by the technical team,
project manager, and review chair

 Technical products made available to
participants prior to SwRR (noted in this
list)

 Updated concept of operations
 Preliminary system requirements

allocation to software
 Software requirements (SRS)

 Complete, consistent, feasible,
testable, and traceable

 Identify test, delivery and quality
requirements, and are
understandable

 Functional requirements
 High-level requirements for each

functional area
 Block diagram of the major

software components in each
functional area, their interfaces
and data flows

 Definition of relevant operational
modes (e.g., nominal, critical,
contingency)

 Critical and/or controversial
requirements, including safety-

critical requirements, open
issues, and areas of concern

 Requirements needing
clarification or additional
information

 Traceability Matrix (bidirectional)
 Requirements to higher-level

requirements
 Requirements to build and

system level tests
 Performance requirements

 Performance requirements for
the software

 Critical timing relationships and
constraints

 Software Interface Specifications (SISs -
requirements portion)

 Software requirements and interface
requirements have been analyzed and
specified

 Computer resource estimates and
margins (memory, bus, throughput)

 Software Quality Assurance Plan (SQAP)
 Software QA organization structured with

independent reporting relationship
outside development group

 Updated PHA/Software Assurance
Classification Report (SACR), Software
Safety Litmus Test

 Review for technical and economic
feasibility completed for allocation of
functions at the (sub)system level to
hardware, firmware, and software

 Design Constraints
 Design strategy

 Explanation of design drivers and
design decisions that have been
made, including software
architecture, operating systems,
reuse of existing software, and
selection of COTS components

 Resource goals and preliminary
sizing estimates (incl. timing and
database storage) in the context
of available hardware allocations;
strategies for measuring and
tracking resource utilization

 Initial Build Plan

 NASA Software Engineering Handbook

9 Section: Lifecycle Review Entry/Exit Criteria Guidance

 Risk management plan
 Risks that may impact cost,

schedule and technical goals
completed

 Configuration Management Plan
addressing:
 Configuration identification,

change control, status
accounting, and configuration
audits

 SDP / SMP updated for corresponding
architectural design and test
development activities
 Personnel identified (quantity,

names, assignment duration,
required skills)

 Organizational responsibilities
and interfaces

 All computer programs identified,
their development schedules
compatible, their dependencies
evident in schedules, and
supporting resource allocations
made

 Updated cost estimate
 Milestones are verifiable and

achievable
 Schedules for development of all

computer programs, and
procedures for monitoring and
reporting their status

 Processes and metrics for
program success

 Management methods and
controls for design &
development

 Programming languages, security
requirements, operational and
support concepts identified

 Preliminary high level software
architecture

 Qualification requirements
 Overall software test strategy,

including the test levels (unit,
integration, build, and system-
level testing), test types
(interface, load/stress,
regression), and test tools

 Software development and test
environments, including
processors, operating systems,
communications equipment,
simulators and their fidelity

 Test facilities, needs and
capabilities

 Methodology for verifying the
system requirements and
acceptance criteria

 Test tool requirements and
development plans

 Preliminary software V&V plan
 Peer reviews completed: SMP, s/w

requirements, V&V plans, preliminary
s/w system architectural design (if
identified for peer review/inspection in
s/w development plans)

 Make-buy decisions supported by
analysis

 Analyses completed, as applicable:
 Functional analyses
 Testability
 Operability
 Failure modes and effects

analyses
 Reliability engineering
 Systems safety and hazards
 Life-cycle costs
 Security

 Trade-off and design decisions completed
and reviewed, as applicable, for:
 Inherited capabilities
 New technologies
 Programming language selection
 Sizing and timing budget
 Design methods and tool

selection
 Programming standards and

conventions
 Database conceptual design

 Software User’s Guide/Operator’s
Manual (UG/SOM - user’s guide portion)

Exit/Success Criteria
 Software requirements determined to be

clear, complete, consistent, feasible,
traceable, testable

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 10

 SMP, software requirements, interface
requirements, V&V plans are adequate
and feasible basis for architectural design
activities and are approved, baselined
and placed under configuration
management

 Requirements and performance
requirements defined, testable, and
consistent with cost, schedule, risk,
technology readiness, and other
constraints

 System requirements, approved material
solution, available product/process
technology, and program resources form
a satisfactory basis for proceeding into
the development phase

 All SwRR RIDs and actions are
documented with resolution plans and
authorization received to proceed to
software architecture design

MISSION DEFINITION REVIEW

(MDR)

Entrance Criteria
 Successful completion of the previous

review (typically SRR) and responses
made to all Requests for Actions (RFAs)
and Review Item Discrepancies (RIDs)

 Preliminary agenda, success criteria, and
charge to the board have been agreed to
by the technical team, project manager,
and review chair

 Technical products made available to
participants prior to SDR (noted in this
list)

 System architecture, including software
 Preferred software solution definition

including major tradeoffs and options
 Updated baselined documentation, as

required
 Preliminary functional baseline (with

supporting trade-off analyses and data)
 Preliminary system software functional

requirements
 Updated risk management plan (could be

part of SDP/SMP)

 Updated software risk
assessment and mitigations
(including Probabilistic Risk
Assessment (PRA), as applicable)

 Updated SDP/SMP

 Updated technology
development, maturity, and
assessment plan

 Updated cost and schedule data

 Work Breakdown Structure
 Updated logistics documentation
 Software verification and validation plan
 Software requirements document(s)
 Interface requirements documents

(including software)
 Technical resource utilization estimates

and margins
 Updated preliminary software safety

analysis
 Project Software Data Dictionary
 Project Software Configuration

Management Plan
 Project Software Assurance Plan
 Project Software Maintenance Plan
 Software inputs / contributions to

 Systems Engineering
Management Plan (SEMP)
changes, if any

 Based on system complexity,
updated human rating plan

 Flow down of system
requirements to all software
functional elements of the
system

Exit/Success Criteria
 Software requirements, including

mission success criteria and any sponsor-
imposed constraints, are defined and
form the basis for the proposed
conceptual design

 All software technical requirements are
allocated and the flow down to
subsystems is adequate; requirements,
design approaches, and conceptual
design will fulfill the mission needs

 NASA Software Engineering Handbook

11 Section: Lifecycle Review Entry/Exit Criteria Guidance

consistent with the available resources
(cost, schedule, throughput, and sizing)

 Requirements process is sound and can
reasonably be expected to continue to
identify and flow detailed requirements
in a manner timely for development

 Technical approach is credible and
responsive to the identified requirements

 Technical plans have been updated, as
necessary

 Tradeoffs are completed, and those
planned for Phase B adequately address
the option space

 Significant development, mission, and
safety risks are identified and technically
assessed, and a process and resources
exist to manage the risks

 Adequate planning exists for the
development of any enabling new
technology

 Operations concept is consistent with
proposed design concept(s) and in
alignment with the mission requirements

 All allocated requirements are verifiable
and traceable to their corresponding
system level requirement

 Preliminary verification approaches are
agreed upon

 Requisite level of detail and resources are
available to support the acquisition and
development plan within existing
constraints

 A software system is defined which
satisfies all of the system requirements
assigned to software

 All of these software system
requirements are traceable to either
mission objectives, concept of
operations, or interface requirements

 Monitoring processes/practices are in
place to create software system within
planned technical, schedule, cost, effort,
and quality capabilities

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 12

SYSTEM DEFINITION REVIEW

(SDR)

Entrance Criteria
 Successful completion of the previous

review (typically SRR) and responses
made to all Requests for Actions (RFAs)
and Review Item Discrepancies (RIDs)

 Preliminary agenda, success criteria, and
charge to the board have been agreed to
by the technical team, project manager,
and review chair

 Technical products made available to
participants prior to SDR (noted in this
list)

 System architecture, including software
 Preferred software solution definition

including major tradeoffs and options
 Updated baselined documentation, as

required
 Preliminary functional baseline (with

supporting trade-off analyses and data)
 Preliminary system software functional

requirements
 Updated risk management plan (could be

part of SDP/SMP)

 Updated software risk
assessment and mitigations
(including Probabilistic Risk
Assessment (PRA), as applicable)

 Updated SDP/SMP

 Updated technology
development, maturity, and
assessment plan

 Updated cost and schedule data

 Work Breakdown Structure
 Updated logistics documentation
 Software verification and validation plan
 Software requirements document(s)
 Interface requirements documents

(including software)
 Technical resource utilization estimates

and margins
 Updated preliminary software safety

analysis
 Project Software Data Dictionary

 Project Software Configuration
Management Plan

 Project Software Assurance Plan
 Project Software Maintenance Plan
 Software inputs / contributions to

 Systems Engineering
Management Plan (SEMP)
changes, if any

 Based on system complexity,
updated human rating plan

 Flow down of system
requirements to all software
functional elements of the
system

 Software requirements, including mission
success criteria and any sponsor-imposed
constraints, are defined and form the
basis for the proposed conceptual design

 All software technical requirements are
allocated and the flow down to
subsystems is adequate; requirements,
design approaches, and conceptual
design will fulfill the mission needs
consistent with the available resources
(cost, schedule, throughput, and sizing)

 Requirements process is sound and can
reasonably be expected to continue to
identify and flow detailed requirements
in a manner timely for development

 Technical approach is credible and
responsive to the identified requirements

 NASA Software Engineering Handbook

13 Section: Lifecycle Review Entry/Exit Criteria Guidance

Exit/Success Criteria
 Software requirements, including mission

success criteria and any sponsor-imposed
constraints, are defined and form the
basis for the proposed conceptual design

 All software technical requirements are
allocated and the flow down to
subsystems is adequate; requirements,
design approaches, and conceptual
design will fulfill the mission needs
consistent with the available resources
(cost, schedule, throughput, and sizing)

 Requirements process is sound and can
reasonably be expected to continue to
identify and flow detailed requirements
in a manner timely for development

 Technical approach is credible and
responsive to the identified requirements

 Technical plans have been updated, as
necessary

 Tradeoffs are completed, and those
planned for Phase B adequately address
the option space

 Significant development, mission, and
safety risks are identified and technically
assessed, and a process and resources
exist to manage the risks

 Adequate planning exists for the
development of any enabling new
technology

 Operations concept is consistent with
proposed design concept(s) and in
alignment with the mission requirements

 All allocated requirements are verifiable
and traceable to their corresponding
system level requirement

 Preliminary verification approaches are
agreed upon

 Requisite level of detail and resources are
available to support the acquisition and
development plan within existing
constraints

 A software system is defined which
satisfies all of the system requirements
assigned to software

 All of these software system
requirements are traceable to either

mission objectives, concept of
operations, or interface requirements

 Monitoring processes/practices are in
place to create software system within
planned technical, schedule, cost, effort,
and quality capabilities

PRELIMINARY DESIGN REVIEW

(PDR)

Entrance Criteria
 Successful completion of the SDR or MDR

and responses made to all SDR or MDR
Requests for Actions (RFAs) and Review
Item Discrepancies (RIDs), or a timely
closure plan exists for those remaining
open

 Preliminary agenda, success criteria, and
charge to the board have been agreed to
by the technical team, project manager,
and review chair

 Technical products made available to
participants prior to PDR (noted in this
list)

 Updated baselined documentation, as
required

 Updated technology development
maturity assessment plan

 Updated risk assessment and mitigation
 Updated cost and schedule data
 Updated logistics documentation, as

required
 Applicable technical plans (e.g., technical

performance measurement plan,
payload-to-carrier integration plan,
producibility / manufacturability program
plan, reliability program plan, quality
assurance plan)

 Applicable standards
 Interface control documents
 Software V&V Plan
 Technical resource utilization estimates

and margins

 Storage or memory resource
allocations developed allocating
those resources to each software
segment in the architecture

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 14

 Updated SDP/SMP

 Work Breakdown Structure
 Preliminary Traceability Matrix to CSCI

level, including V&V trace

 safety-critical requirements
highlighted

 Requirements allocated to
components of the architecture
(to CSCI level)

 SDD and Traceability Matrix review by
test team completed and SDD updated as
needed

 SMP updated for the corresponding
detailed design activities

 Software inputs or contributions to the
updated Project Plan

 Supplier documentation

 Software Data Dictionary(s)

 Software Classification(s)

 Software Development or
Management Plan(s) [with V&V
separate]

 Software Configuration
Management Plan(s)

 Software Assurance Plan(s)

 Software Maintenance Plan(s)
 Revised SRS

 Software requirements to CSCI
level

 Subsystem and lower-level
technical requirements

 Requirements for reuse of
existing software, reuse analysis

 Performance requirements,
including memory, bus, CPU
requirements

 Quality requirements, e.g.,
reliability, usability, or
maintainability requirements

 Safety requirements

 Security requirements

 Derived requirements
 Revised Operational Concepts, as

applicable

 Normal operations scenarios

 Fault detection, isolation and
recovery (FDIR) strategy

 Hazard reduction strategies
 Lessons Learned

 Review of existing Lessons
Learned from previous projects

 Lessons Learned captured from
software areas of the project;
indicate the problem or success
that generated the Lesson
Learned, what the Lesson
Learned was, and its applicability
to future projects

 Confirmation that Lessons
Learned added to Lessons
Learned database

 Trade studies

 Addressing COTS, reuse, etc.

 Trade-off analysis and data
supporting design, as required

 Documented Alternative Design
Solutions and Selection Criteria

 Documented Solutions, Analysis,
Decision, and Rationale

 Inherited capabilities identified
and compatible with the designs

 Preliminary Software Design Document
(SDD)

 Subsystem design specifications for each
configuration item (h/w and s/w)

 Completed definition of the software
architecture and preliminary database
design description, as applicable

 External interfaces and end-to-
end data flow

 Design drivers (e.g.,
performance, reliability, usability,
hardware considerations)

 Overview of software
architecture, including context
diagram

 List of subsystems, tasks, or
major components – e.g., user
interface, database, task
management

 Functional allocations,
descriptions of major modules,
and internal interfaces

 NASA Software Engineering Handbook

15 Section: Lifecycle Review Entry/Exit Criteria Guidance

 Safety considerations in the
design elements and interfaces

 Design verification approach,
e.g., prototyping, inspection,
peer review

 Architectural design verified via
operational scenarios to include
required functionality, operating
modes, and states

 Safety analyses and plans

 Matrix showing each
subsystem/task/component’s
software classification (per NPR
7150.2A), its safety classification
(per NASA-STD-8719.13B), the
rationale for the classifications,
and the status of the
classifications’ approval by
Software Assurance and
management

 Updated PHA, Software Safety
Litmus Test, if necessary

 Approved SMP/ PHA/Software
Assurance Classification Report
(SACR)

 Analyses completed:

 Partitioning analysis (modularity)

 Executive control and
Start/Recovery

 Control and Data flow analysis

 Operability

 Failure modes and effects
analyses

 Results of prototyping factored into
architectural design

 Prototype software, if necessary
 Critical components identified and trial

coding scheduled
 Human engineering aspects of design

addressed with solutions acceptable to
potential users

 Developmental tools and facility
requirements identified and plans made
and actions taken to ensure their
availability when needed

 Test tools and facility requirements
identified with plans and actions to
ensure their availability when needed

 Test group involved in requirements and
design analysis

 Security and supportability requirements
factored into the design

 Metrics established and gathered to
measure software development progress

 Procedures and tools developed for
mechanizing management and
configuration management plans

 Configuration Control Board established
for software (and change control
procedures working)

 Configuration management system
understood by those who must use it

 Library established for storing, controlling
and distributing software products;
library procedures understood and
working

 Independent software quality assurance
group formed and contributing as a team
member to the design and test activities

 Interdisciplinary teams working design
issues that cross (sub)system component
boundaries (software, hardware, etc.)

 Peer reviews completed: SRS , software
architectural design (if identified for s/w
peer review/inspection in s/w
development plans), integration test
plans

 Status of change requests

Exit/Success Criteria
 Top-level requirements including mission

success criteria, Technical Performance
Measures (TPMs), and any sponsor-
imposed constraints are agreed upon,
finalized, stated clearly, and consistent
with preliminary design

 Flow down of verifiable requirements is
complete and proper or, if not, an
adequate plan exists for timely resolution
of open items; requirements are
traceable to mission goals and objectives

 All supplier software
requirements are verifiable

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 16

 Preliminary design is expected to meet
the functional and performance
requirements at an acceptable level of
risk

 Definition of technical interfaces is
consistent with overall technical maturity
and provides an acceptable level of risk

 Adequate technical interfaces are
consistent with the overall technical
maturity and provide an acceptable level
of risk

 Adequate technical margins exist with
respect to TPMs

 Any required new technology has been
developed to an adequate state of
readiness, or back-up options exist and
are supported to make them a viable
alternative

 Project risks are understood and credibly
assessed; plans, process, and resources
exist to effectively manage them

 Operational concept is technically sound,
includes (where appropriate) human
factors, and includes flow down of
requirements for its execution

 All RIDs/actions are completed and
customer approval to proceed to detailed
design phase

 Proposed design approach has sufficient
maturity to proceed to final design

 Subsystem requirements,
subsystem preliminary design,
results of peer reviews, and plans
for development, testing and
evaluation form a satisfactory
basis for proceeding into detailed
design and test procedure
development

 SMP, the software architectural design,
and integration test plans adequate and
feasible to support software detailed
design

 Products (listed above) are approved,
baselined and placed under configuration
management

 Software inputs / contributions to

 Safety and mission assurance
(e.g., safety, reliability,

maintainability, quality, and EEE
parts) adequately addressed in
preliminary designs and any
applicable S&MA products (e.g.,
Probabilistic Risk Assessment
(PRA), system safety analysis, and
failure modes and effects
analysis) have been approved

 Management processes used by
the mission team are sufficient to
develop and operate the mission

 Cost estimates and schedules
indicate that the mission will be
ready to launch and operate on
time and within budget, and that
the control processes are
adequate to ensure remaining
within allocated resources

 NASA Software Engineering Handbook

17 Section: Lifecycle Review Entry/Exit Criteria Guidance

CRITICAL DESIGN REVIEW (CDR)

Entrance Criteria
 Successful completion of the previous

review (typically PDR) and responses
made to all Requests for Actions (RFAs)
and Review Item Discrepancies (RIDs), or
a timely closure plan exists for those
remaining open

 Preliminary agenda, success criteria, and
charge to the board have been agreed to
by technical team, project manager, and
review chair

 Technical products made available to
participants prior to CDR (noted in this
list)

 Updated baselined documents, as
required

 Technical data package (e.g., integrated
schematics, Spares provisioning list,
interface control documents, engineering
analyses, and specifications)

 Updated Technology Development
Maturity Assessment Plan

 SMP updated for implementation and
unit test activities

 Updated Work Breakdown
Structure

 Updated cost and schedule data
 Progress against software management

plans
 Plan for milestone and peer reviews,

walkthroughs, and external reviews
 Documentation plan, including each

document’s status and when it will be
baselined

 Software requirements, management
process, including documents used and
produced, and V&V plan are baselined

 Preliminary NPR 7150.2 compliance
matrix

 Design process, including methodology
and standards used, design
documentation produced, inspections
and reviews

 Implementation process, incl. standards,
review process, problem reporting, unit
test, integration

 Management procedures and tools for
measuring and reporting progress
available and working

 Software measurements on planned and
actual regarding product size, cost,
schedule, effort, and defect

 Procedures established and working for
software quality assurance and quality an
integral part of the product being
produced

 Updated logistics documentation
 Staffing-up problems being addressed

and contingency plans in place
 IT Security Requirements (Mission-

specific)
 Software design document(s) (including

interface design documents, detailed
design and unit test)

 Command and telemetry list
 Final Design Solution, Evaluation, and

Rationale

 Documented Make, Buy, and/or
Reuse, Analysis, Criteria, and
Rationale

 Reused/heritage software or
functionality from previous
projects; necessary modifications

 Final Architecture Definition
 System design diagram (e.g., Level 0 data

flow diagram or UML)

 For each task in the system
design diagram

 Design diagrams for the task

 Description of functionality and
operational modes

 Safety considerations addressed
in the design

 Resource and utilization
constraints (e.g., CPU, memory);
how the software will adapt to
changing margin constraints;
performance estimates

 Data storage concepts and
structures

 Data flow diagrams

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 18

 Identification and formats of input and
output data

 Interrupts and/or exception handling,
including event, FDC, and error messages

 IT Security features (design features)
 Detailed description of software

operation and flow
 Operational limits and constraints
 Technical resource utilization estimates

and margins

 Detailed timing and storage
allocation compiled

 Analyses completed:

 Algorithm accuracy

 Critical timing and sequence
control

 Dimensional analysis (such as
consistency of array dimensions)

 Singularity Analysis (such as
division by zero)

 Undesired event handling

 Operability

 Failure modes and effects
analyses

 Final status and results of analyses
 Algorithms sufficient to satisfy their

requirements
 Failure detection and correction (FDC)

requirements, approach, and detailed
design

 Subsystem/component context diagram
 Trial code analyzed and designs modified

accordingly
 Supplier documentation

 Software Design Description(s)

 Interface Design Description(s)

 Updated Supplier Software
Verification and Validation
Plan(s)

 Preliminary Supplier Software
Test Procedure(s)

 Peer reviews for software and rework
accomplished, as defined in the s/w
and/or project plans

 Designs comprising the software
completed, peer reviewed and placed
under change control

 SRS to Computer Software Unit (CSU)
level

 Updated Traceability Matrix (to CSU
level)

 Verification that detailed designs cover
the requirements

 Product Assurance and Software Safety
plans and activities

 System safety analysis with associated
verifications

 Updated HA / Software Assurance
Classification Report (SACR), if necessary

 Subsystem-level and preliminary
operations safety analyses

 Updated risk assessment and mitigation
 Updated reliability analyses and

assessments
 Independent verification and validation

(IV&V) plans and status
 Systems and subsystem certification

plans and requirements (as needed)
 Configuration Management (CM)

processes, including discrepancy
reporting and tracking (development and
post-release)

 Development environment (e.g., h/w
diagram, operating system(s), compilers,
DBMS, tools)

 If relevant, new compiler validated and
producing acceptable object code for the
target machine

 Tools needed for software
implementation completed, qualified,
installed and accepted, and team trained
in their use

 Facilities for software implementation in
place, operating, ready for use

 Build plan
 Product build-to specifications for each

hardware and software configuration
item, along with supporting trade-off
analyses and data

 Coding, integration, and test plans and
procedures

 V&V plan (including requirements and
specification)

 Test team roles, functions, support
required are defined

 NASA Software Engineering Handbook

19 Section: Lifecycle Review Entry/Exit Criteria Guidance

 Software Test Plan (integration and test
procedure outlines)

 Test procedures
 Test levels (e.g., unit testing, integration

testing, system testing) – description,
who executes, test environment,
standards followed, verification
methodologies

 Testing preparation and execution
activities, incl. testing of reused/heritage
software, if applicable

 Build test timeline and ordered list of
components and requirements to be
tested in each build

 Test environments for each test level –
diagram and description of tools,
testbeds, facilities

 Test group trained prepared to evaluate
the code using their facilities and tools

 Software for testing / activation
 Software requirement verification

recording, monitoring, and current status
– databases and test reports; sample test
verification matrix

 System and acceptance testing –
operational scenarios to be tested,
including stress tests and recovery
testing, if applicable

 Acceptance process – reviews (e.g.,
Acceptance Test Readiness Review,
Acceptance Test Review), approval, and
signoff processes

 Acceptance criteria
 Delivery, Installation, Maintenance

 Disposition of source code and
tools, handling of load images,
installation of databases, etc.

 Version identification and
documentation

 Maintenance plan, if applicable,
including disposition of COTS
components (source code,
licenses, etc.)

 Close-out and archive of software
products

 Launch site operations plan
 Checkout and activation plan

 Disposal plan (including decommissioning
or termination)

 Preliminary Operations Handbook
 Revised Draft of Programmer’s Manual
 Draft of User’s Manual
 Lessons Learned

 Review of existing Lessons
Learned from previous projects

 Lessons Learned captured from
software areas of the project;
indicate the problem or success
that generated the Lesson
Learned, what the Lesson
Learned was, and its applicability
to future projects

 Confirmation that Lessons
Learned added to Lessons
Learned database

 Status of change requests
 Software inputs / contributions to

updated Project Plan

Exit/Success Criteria
 All supplier software requirements have

been mapped to the software design
 All elements of the design are compliant

with functional and performance
requirements

 Detailed design is expected to
meet requirements with
adequate margins at acceptable
level of risk

 Interface control documents are
sufficiently matured to proceed with
fabrication, assembly, integration, and
test, and plans are in place to manage
any open items

 High confidence exists in the product
baseline, and adequate documentation
exists or will exist in a timely manner to
allow proceeding with coding,
integration, and test

 Product verification and product
validation requirements and plans are
complete

 Verification approach is viable, and will
confirm compliance with all requirements

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 20

 Testing approach is comprehensive, and
planning for system assembly,
integration, test, and launch site and
mission operations is sufficient to
progress into next phase

 Adequate technical and programmatic
margins and resources exist to complete
development within budget, schedule,
and risk constraints

 Risks to mission success are understood
and credibly assessed, and plans and
resources exist to effectively manage
them

 Software inputs / contributions to

 Safety and mission assurance
(e.g., safety, reliability,
maintainability, quality, and EEE
parts) have been adequately
addressed in system and
operational designs, and any
applicable S&MA products (e.g.,
Probabilistic Risk Assessment
(PRA), system safety analysis and
failure modes and effects
analysis) have been approved

 Management processes used by the
project team are sufficient to develop
and operate the mission

 High priority RIDs against the SDD are
closed/actions are completed and
customer approval to proceed to next
phase

 Approved readiness to proceed with
software implementation and test
activities

 SMP, software detailed designs, and unit
test plans are an adequate and feasible
basis for the implementation and test
activities

 Products (listed above) are approved,
baselined, and placed under
configuration management

PRODUCTION READINESS REVIEW

(PRR)
A PRR is held for FS&GS projects developing

or acquiring multiple or similar systems

greater than three or as determined by the

project. The PRR determines the readiness of

the system developers to efficiently produce

the required number of systems. It ensures

that the production plans; fabrication,

assembly, and integration enabling products;

and personnel are in place and ready to begin

production. – NPR 7123.1

Entrance Criteria
 Significant production engineering

problems encountered during
development are resolved

 Design documentation adequate to
support production

 Production plans and preparation
adequate to begin fabrication

 Production-enabling products and
adequate resources available, allocated,
and ready to support end product
production

 Production plans
 Production risks and mitigations
 Schedule

Exit/Success Criteria
 System requirements fully met in final

production configuration
 Adequate measures in place to support

production
 Design-for-manufacturing considerations

ensure ease and efficiency of production
and assembly

 Risks identified, credibly assessed, and
characterized, and mitigation efforts
defined

 Delivery schedules verified
 Alternate sources for resources

identified, as appropriate

 NASA Software Engineering Handbook

21 Section: Lifecycle Review Entry/Exit Criteria Guidance

 Required facilities and tools are sufficient
for end product production

 Specified special tools and test
equipment are available in proper
quantities

 Production and support staff are qualified
 Production engineering and planning are

sufficiently mature for cost-effective
production

 Production processes and methods are
consistent with quality requirements

 Qualified suppliers are available for
materials that are to be procured

SYSTEM INTEGRATION REVIEW

(SIR)

Entrance Criteria
 Integration plans and procedures

completed and approved
 Segments and/or components available

for integration
 Mechanical and electrical interfaces

verified against the interface control
documentation

 All applicable functional, unit-level,
subsystem, and qualification testing
conducted successfully

 Integration facilities, including clean
rooms, ground support equipment,
electrical test equipment, and simulators
ready and available

 Support personnel adequately trained
 Handling and safety requirements

documented
 All known system discrepancies identified

and disposed in accordance with agreed-
upon plan

 All previous design review success criteria
and key issues satisfied in accordance
with agreed-upon plan

 Quality control organization ready to
support integration effort

 V&V plans, test plans

Exit/Success Criteria
 Adequate integration plans and

procedures are completed and approved
for the system to be integrated

 Previous component, subsystem, and
system test results form a satisfactory
basis for proceeding to integration

 Risk level is identified and accepted by
program/project leadership, as required

 Integration procedures and work flow
have been clearly defined and
documented

 Review of integration plans, as well as
procedures, environment, and
configuration of items to be integrated,
provides a reasonable expectation that
integration will proceed successfully

 Integration personnel have received
appropriate training in integration and
safety procedures

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 22

TEST READINESS REVIEW (TRR)

Entrance Criteria
 Objectives of testing clearly defined and

documented, and test plans, procedures,
environment, and configuration of test
item(s) support those objectives

 Configuration of system under test
defined and agreed to; all interfaces
placed under configuration management
or defined in accordance with an agreed-
to plan, and version description
document available to TRR participants

 Applicable functional, unit-level,
subsystem, system, and qualification
testing conducted successfully; results
available

 All TRR-specific materials, such as test
plans, test cases, and procedures,
available to all participants prior to TRR

 Updated and current baselined
documentation (from previous reviews -
SRR, PDR, CDR

 Updated requirements and design
documentation

 Required documents in the state/status
required Deviations? Waivers?

 All known system discrepancies identified
and disposed in accordance with agreed-
upon plan

 All previous design review success criteria
and key issues satisfied in accordance
with agreed-upon plan

 All required test resources people
(including a designated test director),
facilities, test articles, test
instrumentation, and other test enabling
products identified and available to
support required tests

 Facilities and tools for integration and
test ready, qualified, validated, and
available for operational use including
test engineering products (test cases,
procedures, tools, etc.), test beds,
simulators, and models

 Roles and responsibilities of all test
participants defined and agreed to

 Test contingency planning accomplished,
and all personnel trained

 Supplier Software Version Description(s)
 Software Build from CM
 Operational software ready for testing
 Informal Dry Run completed without

errors
 Outstanding Software Change Requests

(SCRs) ready for review
 Updated Traceability Matrix
 All requirements included in test

procedure document and uniquely
identified and traceable in the SRTM

 Requirements Analysis and Traceability
Reports (with possible RIDs)

 Code Analysis and Assessment Results
(including SCRs, RIDs, etc.)

 Metric Data and Reports
(implementation and test)

 Description of System Test Approach
 Test plan includes safety critical test

scenarios
 Test plan includes test scenarios for all

software/system requirements defined in
the SRTM, tests that check the
performance at the limits of ranges
specified for the requirements and
operational scenarios; includes test
limitations and/or constraints

 Validation of operations and users
manuals

 Test case structure established that
identifies for each test:

 Software requirements to be
tested

 Required inputs

 Facilities and test tools required

 Expected outputs and analysis
methods

 Software entities to be exercised
by the test

 Configuration for system testing
 Summary of Quality Assurance (QA)

activities used during development
 Successful audit of the VDD (such as FSW)

including fixes

 NASA Software Engineering Handbook

23 Section: Lifecycle Review Entry/Exit Criteria Guidance

 Any current risks, issues, or requests for
action (RFAs) that require follow-up and
how they will be tracked to closure

 Results of Testing completed to date

 Objectives of tests

 Confirm all steps in the test runs
are documented

 Results and Safety Critical Test
results

 Tests performed

 Successful Tests

 Known problems

 Deviations

 Waivers

 Issues
 Software Test Process

 Build and System Test
Methodology

 Electrostatic Discharge
considerations

 Safety critical software
verification considerations

 Software test standards
(including use of CM)

 CM process and Procedures used
for testing and how each was
verified prior to usage

 Process for capturing test data
and storing it in the CM system

 Test procedure red-line process

 If/how a test can be resumed if
error found during testing

 Discrepancy Reporting System

 Process for tracking Test Progress

 Role of Quality Assurance
including redlining and QA
witnessing role and
responsibilities

 Any safety and security issues
relevant to the testing activity

 All workarounds and non-
functioning software
components

 Time required for testing; include
schedule and analysis of time
needed on various environments
/ testbeds / Spacecraft

 List of all Requirements Documents
relevant to Acceptance testing

 Acceptance Test Readiness

 Process for analysis of Test
Results including the division of
responsibility

 Acceptance Test testbed
(environment) setup (hardware)

 Setup and use of Simulators or
other Test tools and their
required qualifications

 Limitations of the testbed
(environment)

 Tests that require hardware for
verification

 Description, at a high level, of
what each test does, how long it
lasts, and any special
circumstances

 IV&V report/status - if applicable

 Preparedness for Acceptance
Testing

 Requests For Action (RFAs)

 Decision to proceed to
Acceptance Testing

 SMP updated for integration and test
activities

 Updated software cost estimate, and
software related expenditures collection
and report by life cycle phases

 Test Schedule

 Current system test status

 Plans for Acceptance Test

 Acceptance Test acceptance
criteria

 Issues and Concerns

 Test Schedule
 Schedules for integration and test

established and are reasonable based on
results of unit testing

 Tests reusable for regression testing
 Expected results
 Completed evaluations (in conjunction

with unit testing):

 Verification of computations
using nominal data

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 24

 Verification of computations
using stress data

 Verification of output options
and formats

 Exercise of executable
statements in units at least once

 Test of options at branch points

 Verification of standards
compliance

 Completed evaluations (in conjunction
with s/w integration and test):

 Verification of performance
throughout anticipated range of
operation conditions including
nominal, abnormal, failure and
degraded mode situations

 Verification of performance
throughout anticipated range of
operating conditions as various
strings of units are linked
together and various modes are
exercised

 Verification of end-to-end
functional flows and database
linkages

 Exercise of logic switching and
executive control options at least
once

 Risk analysis and risk list updated and
associated risk management plan
prepared

 Databases for integration and test been
created and validated

 Test network showing interdependencies
among test events and planned time
deviations for these activities prepared

 Lessons Learned

 Plans to capture any lessons
learned from test program are
documented

 Review of existing Lessons
Learned from previous projects

 Lessons Learned captured from
software areas of the project;
indicate the problem or success
that generated the Lesson
Learned, what the Lesson

Learned was, and its applicability
to future projects

Exit/Success Criteria
 User-defined scenarios developed to test

interactive or operator-oriented software
 Peer reviews completed for

implementation and tests to be
performed, as defined in the software
and/or project plans

 Adequate test plans are completed and
approved to proceed for the system
under test

 Adequate identification and coordination
of required test resources are completed

 Previous component, subsystem, and
system test results form a satisfactory
basis for proceeding into planned tests

 Risk level is identified and accepted by
program/competency leadership as
required

 Objectives of testing have been clearly
defined and documented, and review of
all test plans, as well as procedures,
environment, and configuration of test
item, provide a reasonable expectation
that objectives will be met

 Test cases have been reviewed and
analyzed for expected results, and results
are consistent with test plans and
objectives

 Test personnel have received appropriate
training in test operation and safety
procedures

 Provisions have been made should test
levels or system response exceed
established limits or if the system
exceeds its expected range of response

 Software is ready to be tested
 Formal dry test run completed
 SMP, software implementations, and test

are an adequate and feasible basis for
integration and test activities

 Products (listed above) are approved,
baselined and placed under configuration
management

 NASA Software Engineering Handbook

25 Section: Lifecycle Review Entry/Exit Criteria Guidance

SYSTEM ACCEPTANCE REVIEW

(SAR)

Entrance Criteria
 A preliminary agenda coordinated

(nominally) prior to SAR
 Technical products made available to

participants prior to SAR (noted in this
list)

 Results of the SARs conducted at the
major suppliers

 Transition to production and/or
manufacturing plan

 Product verification results / test reports
 Product validation results
 Documentation that the delivered system

complies with the established acceptance
criteria

 Documentation that the system will
perform properly in the expected
operational environment

 Technical data package updated to
include all test results

 Certification package
 Updated risk assessment and mitigation
 Successfully completed previous

milestone reviews
 Remaining liens or unclosed actions and

plans for closure
 Baselined Software Build
 Metrics Data and Reports
 Software presentation prepared for AR

 Software overview

 Project System Diagram

 Functional software overview

 Software products/artifacts

 Software traceability matrix
examples

 STPr/SVVPr status

 Open RIDs

 Open SCRs

 Software summary and
recommendations

 Lessons Learned

 Review of existing Lessons
Learned from previous projects

 Lessons Learned captured from
software areas of the project;
indicate the problem or success
that generated the Lesson
Learned, what the Lesson
Learned was, and its applicability
to future projects

 Confirmation that Lessons
Learned added to Lessons
Learned database

Exit/Success Criteria
 Required tests and analyses are complete

and indicate that system will perform
properly in expected operational
environment

 Risks are known and manageable
 Software system meets established

acceptance criteria
 Required safe shipping, handling,

checkout, and operational plans and
procedures are complete and ready for
use

 Technical data package is complete and
reflects delivered system

 All applicable lessons learned for
organizational improvement and system
operations are captured

 Software system has sufficient technical
maturity to authorize shipment to
designated operational facility or launch
site

OPERATIONAL READINESS REVIEW

(ORR)

Entrance Criteria
 All validation testing completed
 Test failures and anomalies from

validation testing resolved and results
incorporated into all supporting and
enabling operational products

 All operational supporting and enabling
products (e.g., facilities, equipment,
documents, updated databases) that are
necessary for the nominal and
contingency operations have been tested

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 26

and delivered/installed at the site(s)
necessary to support operations

 Software user’s manual completed
 Operations manual complete
 Software inputs / contributions to

 Training provided to users and
operators on correct operational
procedures for system

 Ground Systems Readiness
 Diagram describing main

functionality for project,
how parts interact, and
main flow of data
between major
functional parts

 Problem Reporting and
Change Request process
for Discrepancy Reports
(DR), Enhancement
Reports (ER), Database
Change Requests (DCR)

 Current DR, ER, DCR
status, include historical
trend data, and details
on current open DRs,
ERs, DCRs

 Key parts of system, their
current Operational
Readiness, and how
verified; any issues, how
they will be handled, and
workarounds available
including when
permanent fixes will be
completed

 Key interactions with
other systems, their
Operational Readiness,
and how verified; any
issues, how they will be
handled, and
workarounds available
including when
permanent fixes will be
completed

 Software freeze plan
(when software is frozen
for launch, what types of

fixes will be approved for
implementation under a
freeze, etc.) and how CCB
will handle software
changes or bug fixes
close to launch

 Mission Operations Center
Readiness
 MOC software readiness

for all systems and how
verified; any issues, how
they will be handled, and
workarounds available
including when
permanent fixes will be
completed

 Testing that was done,
results, criticality of
problems encountered,
how problems will be
resolved, and schedule
for
correction/verification of
any fix

 Current status of
procedures that will be
used by the MOC; how
tested, results, and
schedule for
correction/verification of
any fix

 Flight Software Maintenance Process
Planned

• Outstanding items that need to
be completed before readiness is
achieved along with scheduled
date

• Confirmation that flight software
table loads and code patch
testing successfully completed on
all processors, including all
possible on-board media (e.g.,
RAM, EEPROM)

 Science Planning and Processing System
Readiness, as applicable

 Diagram describing Science Data
Processing products and general
timelines involved

 NASA Software Engineering Handbook

27 Section: Lifecycle Review Entry/Exit Criteria Guidance

 Diagram describing Science
System Context (relationship of
main Mission Operations Center,
Mission Planning Office, Science
Validation Facility, Ground
stations, interconnecting
networks, and the main science
data Instrument teams)

 Description of these main
components in high-level detail
including planning and processing
functions; include any special
cases for launch, in-orbit
checkout, end of mission, etc.;
description of testing, results,
and issues done to verify and
validate these components

 Summary of all testing done,
results, and outstanding issues
for Science Data Processing

 Safety and Security Issues

 Software issues with safety, how
addressed, and current status

 Software issues with security,
how addressed, and current
status

 Simulations

 Number and main details for
simulations by subsystem
exercised, for example: Launch,
Attitude Control System,
Command & Data Handling,
Communication, Flight Software,
Power System Electronics,
Mission Operations Center, Pre-
Launch, Others deemed
important for project

 Outstanding issues from
Simulation testing, schedule
impact, workarounds, and risks;
for workarounds, when will
problem/issue be permanently
fixed

 Contingencies and Constraints

 State of Contingency Flow Chart
Book and any planned updates

 List of current constraints on
system, state of database that

details these constraints, and any
outstanding actions that need to
be taken

 Audits that were done and
against what areas to verify
constraints

 Operational problem escalation
process

 Operational emergency
notification process including
telephone numbers to be called

 Documentation Readiness - Status of

 Version Description Document(s);
its location, and any outstanding
issues

 Software User's Manual; its
location, and any outstanding
issues

 Software Operations Plan; its
location, and any outstanding
issues

 Software Maintenance Plan; its
location, and any outstanding
issues

 Software Retirement Plan; its
location, and any outstanding
issues

 Lessons Learned

 Lessons Learned captured from
software areas of the project;
indicate the problem or success
that generated the Lesson
Learned, what the Lesson
Learned was, and its applicability
to future projects

 Confirmation that Lessons
Learned added to Lessons
Learned database

 Work Remaining

 All launch critical work that needs
to be completed before launch
along with expected completion
data

 RFA and RID reports generated as
result of this ORR

NASA Software Engineering Handbook

Section: Lifecycle Review Entry/Exit Criteria Guidance 28

 System, including any enabling products,
is determined to be ready to be placed in
operational status

 All applicable lessons learned for
organizational improvement and systems
operations have been captured

 All waivers and anomalies have been
closed

 Systems hardware, software, personnel,
and procedures are in place to support
operations

 All project and support (flight and
ground) h/w, s/w, and procedures are
ready for operations and user
documentation accurately reflects the
deployed state of the entire system

Exit/Success Criteria
 Summary of status for Operational
Readiness

• Ground Systems
• Flight Systems
• Science Systems
• Documentation including

contingency book readiness
• Operational support and

maintenance support plans
• Configuration control procedures
• Waivers
• Issues
• Decision to proceed to

Operational Readiness

FLIGHT READINESS REVIEW (FRR)

Entrance Criteria
 Certification received that flight

operations can safely proceed with
acceptable risk

 System and support elements confirmed
as properly configured and ready for
flight

 Interfaces compatible and function as
expected

 System state supports a launch "go“
decision based on go/no-go criteria

 Flight failures and anomalies from
previously completed flights and reviews
resolved and results incorporated into all
supporting and enabling operational
products.

 System configured for flight
 Tests, demonstrations, analyses, audits

support flight readiness

Exit/Success Criteria
 Flight vehicle is ready for flight
 Software is deemed acceptably safe for

flight (i.e., meeting the established
acceptable risk criteria or documented as
being accepted by the PM and
Designated Governing Authority (DGA))

 Flight and ground software elements are
ready to support flight and flight
operations

 Interfaces are checked and found to be
functional

 Open items and waivers have been
examined and found to be acceptable

 Software contributions to all open safety
and mission risk items have been
addressed

 NASA Software Engineering Handbook

29 Section: Use of Commercial, Government, Legacy Software

Gateway to Web Handbook

Prototype: only the top link
works (view section on web)

This handbook is interactive!
Click on the links below to
connect to the web features:

 View this section on Web
 Comment on this section
 View this section‟s tags

 Download PDF of only this

section (smaller file)

3. Use of Commercial, Government, Legacy Software
Also known as COTS, GOTS, and MOTS

REQUIREMENTS
From NPR 7150.2A:

Paragraph 2.3.1 The project shall ensure that when a COTS,
GOTS, MOTS, reused, or open source software component is to
be acquired or used, the following conditions are satisfied:
[SWE-027]

a. The requirements that are to be met by the software
component are identified.

b. The software component includes documentation to fulfill
its intended purpose (e.g., usage instructions).

c. Proprietary, usage, ownership, warranty, licensing rights,
and transfer rights have been addressed.

d. Future support for the software product is planned.
e. The software component is verified and validated to the same level of confidence as

would be required of the developed software component.

GUIDANCE
Note from NPR 7150.2A: For these types of software components consider the following:

a. Supplier agreement to deliver or escrow source code or third party maintenance
agreement is in place.

b. A risk mitigation plan to cover the following cases is available:
(1) Loss of supplier or third party support for the product.
(2) Loss of maintenance for the product (or product version).
(3) Loss of the product (e.g., license revoked, recall of product, etc.).

c. An Agreement that the project has access to defects discovered by the community of
users has been obtained. When available, the project can consider joining a product
users group to obtain this information.

d. A plan to provide adequate support is in place; the plan needs to include maintenance
planning and the cost of maintenance.

e. Any documentation changes required to the software management, development,
operations, or maintenance plans that are affected by the use or incorporation of COTS,
GOTS, MOTS, reused, and legacy\heritage software.

f. A review of any open source software licenses by the Center Counsel.

RATIONALE
Note from NPR 7150.2A: The project responsible for procuring off-the-shelf software is responsible
for documenting, prior to procurement, a plan for verifying and validating the off-the-shelf software
to the same level of confidence that would be needed for an equivalent class of software if
obtained through a "development" process. The project ensures that the COTS, GOTS, MOTS,
reused and open source software components and data meet the applicable requirements in this
NPR assigned to its software classification as shown in Appendix D of this NPR.

http://nasa7150.onconfluence.com/display/7150/2.3.1

NASA Software Engineering Handbook

Section: Use of Commercial, Government, Legacy Software 30

Some software (e.g. COTS, GOTS) is purchased with no direct NASA or NASA contractor software
engineering involvement in software development. This requirement exists in NPR 7150.2a to
mitigate the risk inherent in the acquisition of COTS, GOTS and other forms of OTS software.

 Projects using this type of COTS/GOTS software must know that that the acquisition and
maintenance of the software is expected to meet NASA requirements as spelled out in this section
of NPR 7150.2a.

This requirement also exists in NPR 7150.2a because some software, whether purchased as
COTS, GOTS or developed/modified in house, may contain open source software (OSS). If OSS
exists within the project software, it can affect how the software can be used in the future, including
internal/external releases or reuse of the software.

COTS/GOTS SOFTWARE
COTS software are products available for purchase and use without the need to conduct
development activities.

GOTS software is defined in A.10 of Appendix A, NPR 7150.2A

COTS/GOTS software can include software tools (e.g. word processor or spreadsheet applications),
simulations (e.g. aeronautical and rocket simulations), and modeling tools (e.g.
dynamics/thermal/electrical modeling tools).

If you are planning to use COTS/GOTS products, be sure to complete the tables under the Tools
section. The purpose of these tables is to ensure that the table entries are considered in your
software lifecycle decisions from software acquisition through software maintenance.

If COTS/GOTS software is used for a portion of the software solution, the software requirements
pertaining to that portion should be used in the testing, verification and validation of the
COTS/GOTS software. For example, if a MIL STD 1553 serial communications is the design solution
for the project communications link requirements, and the COTS/GOTS software design solution is
used along with the COTS/GOTS hardware design solution, then the project software requirements
for the serial communications link should be used to test, verify and validate the COTS/GOTS 1553
software. Other functionality which might be present in the COTS/GOTS 1553 software may not be
covered by the project requirements. This other functionality should be either disabled or
determined to be safe by analysis and testing.

 NASA Software Engineering Handbook

31 Section: Use of Commercial, Government, Legacy Software

MOTS SOFTWARE
Modified Off-the-Shelf (MOTS) software is defined in A.18 of Appendix A in NPR 7150.2A

 “One of the quickest routes to disaster is to believe that one can safely and effectively modify a
COTS/GOTS product. Sometimes it does make sense and can be justified. In general, however, the
use of MOTS should be an idea of last resort.”

[Tricia Oberndorf, Carnegie Mellon Software Engineering Institute (SEI), September, 2010]

The DoD has had extensive experience in COTS/GOTS and MOTS. A Lessons Learned item,
Commercial Item Acquisition: Considerations and Lessons Learned, specifically includes lessons
learned from MOTS. Consider the following statements from the Lessons Learned item:

 [3.1.3] Modifying the commercial items is not the best way to bridge the gap [between
DoD standards and the COTS product].
Some programs failed because of a firm expectation that commercial items should be
modified to accommodate program requirements. Like many DoD programs, one private
corporation fell into the trap of modifying most of its commercial items in order to give
them a unique corporate flavor. As a result of the practice, many of the corporate programs
modifying commercial items experienced recurring technical problems and cost overruns. In
contrast, the stakeholders of a successful DoD program made a firm decision to modify
system requirements and not commercial items. The program delivered the basic capability
in 90 days for 20% of the cost of a previous unsuccessful effort to build the same system.
The failure of the previous effort was attributed to extensive modification of commercial
items.

 Footnote 17, page 16:
The definition of commercial item from the FAR, Part 2, allows for minor” modifications
made to meet Federal Government requirements. In light of problems experienced by a
large number of programs that have modified commercial items, a strong position against
modification is taken here.

 [3.4.6] Extensive program testing of commercial items may be required.
Programs often underestimate the impact of testing commercial items. Often DoD
application of commercial items requires qualification and operational testing and
evaluation (e.g., live-fire testing) to show that the items continue to perform as expected in
unique military environments. In addition, if the commercial item has been modified,
regression testing at the system level may be needed to ensure that the modification does
not change the expected performance of the system. For example, some programs found
that higher performance engines could outperform the airframe, while others found that
faster hardware or software components could introduce timing problems or security holes.
Lack of insight into the internal workings of the commercial item changes the nature of the
test program. One program’s ability to conduct operational test and evaluation was
complicated by the fact that data normally generated during the development testing was
not available for analysis by the operational test team. Another program that was using
multiple commercial items found that even basic, advertised capabilities of commercial

http://www.acq.osd.mil/dpap/Docs/cotsreport.pdf

NASA Software Engineering Handbook

Section: Use of Commercial, Government, Legacy Software 32

items had to be tested before the program could begin its planned integration testing. The
program’s initial plans and schedules for testing commercial items underestimated the
effort required by a factor of six.

LEGACY/HERITAGE CODE
The definitions of Legacy/Heritage code, and Software reuse, are in Appendix A of NPR 7150.2A.

It may be desirable to maintain legacy code largely intact due to one or more of the following
factors:

 The code may have a history of successful application over many runs

 No new software errors have been found in the code in some time and it has been reliable
through many years of use

 The cost of upgrading the legacy code (e.g. a new software development) may be
uneconomical or unaffordable in terms of time or funding

 Upgrading the legacy code could add new software errors

 Software personnel are familiar with the legacy code

 Safety reviews have been conducted on the legacy code under similar applications

On the other hand, it may be desirable to replace legacy code due to one or more of the following
factors:

 No active civil servants or contractors are familiar with the code or its operation

 One or more of the following documents are missing: architecture, requirements,
traceability, design, source code, unit through integration test cases, validation results,
user operational manuals, non-conformances, waivers, coding standards, or other key
documents.

 Lack of conditions for the installation of the software or use of the software or software
development environment

 No safety review has been done on the new code in its old or new operational
environment

 The legacy code may contain open source software with questionable license terms or
rights

 The source code language compilers may be years out of date or even inaccessible

 Emulators may not be available

 Maintenance responsibility unknown

 Legacy code may operate on out-of-date or unavailable operating systems

 Unknown IP, licensing, exportability constraints, if any.

Determining which path to follow (keep or replace legacy code) is largely a cost-risk analysis.
Further guidance on this facet of legacy code will be provided in future iterations of this Electronic
Handbook.

http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002A_&page_name=AppendixA

 NASA Software Engineering Handbook

33 Section: Use of Commercial, Government, Legacy Software

If the decision is made to maintain the use of the legacy code it is recommended that incremental
improvements be made as the code is used. Specifically,

 Requirements should be documented if not already available

 Create verification and validation documents based on testing against any vendor
documentation including user’s manuals

 Start configuration management on the reused code.

 Software architecture and design should be documented if not already available

 Test cases should be documented

 Software debugging and error reporting should be documented

 Have Software Assurance and Safety personnel review the legacy code and documentation

 All documentation, test results, maintenance history, and other such documents associated
with legacy code should be gathered and stored if it is anticipated the code will be reused.

One author, Michael C. Feathers, has defined legacy code as code which has no tests and proceeds
to advise his readers on how to work with legacy code. See the reference link.

OPEN SOURCE SOFTWARE

Open source software is considered a form of Off-The-Shelf software. Even if most of the software
on a NASA project is developed in-house, it may be found in embedded open source software
within the code. It may be more efficient for a software engineer to use widely available and well
tested code developed in the software community for common functions than to “reinvent the
wheel”.

 Open source software is specifically mentioned in the SWE-027 requirement in NPR 7150-2a.

What is Open Source Software?
In general usage:

“Open source software (OSS)” is not to be confused with other forms of inexpensive or
“free” software; the intention of SWE-027 is to cover any software used in the software
system which was not developed in-house. More generalized information on this subject of
OSS is available from Wikipedia at:

http://en.wikipedia.org/wiki/Open_source_software

Verify resources used for any Wikipedia article.

NASA specific definition:

In NPR 2210.1C, “Release of NASA Software” under Appendix A, definitions,

A.1.1.7 “Open Source Software” means software where the recipient is free to use the
software for any purpose, to make copies of the software and to distribute the copies
without payment of royalties, to modify the software and to distribute the modified
software without payment of royalties, to access and use the source code of the software,
and to combine the software with other software in accordance with Open Source

http://en.wikipedia.org/wiki/Open_source_software
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=2210&s=1C

NASA Software Engineering Handbook

Section: Use of Commercial, Government, Legacy Software 34

licenses/agreements. Open source software is a subcategory of Publicly Releasable
software.

Planning ahead for the inclusion of Open Source Software
Whether open source software is acquired or developed by NASA or a NASA contractor, a usage
policy should be established up front to avoid any possible legal issues that may arise. This policy
may be developed in conjunction with advice from the Software Release Agent (even if you do not
plan to release the software) and/or your NASA center’s IP Legal Counsel.

Releasing NASA code containing Open Source Software
When software is released to another NASA Center, NASA project or external organization, it is
important to inform the receiving party of any licenses and restrictions under which the software
is released. It is important to note that additional software required to “run” the released software
is not part of the software release. For example a web application that runs under the Apache
Web Server does not need to include the Apache Public License as part of the relevant licenses.

Software releases are also performed when software is submitted for Space Act Awards such as
the NASA Software of the Year Award. For more information on software releases one should
contact the Software Release Authority at the NASA Center at which the software is being or was
developed.

There are requirements and processes associated with software releases. See NPR 2210.1C,
“Release of NASA Software”, located at
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=2210&s=1A

A cautionary item from NPR 2210.1C is worth repeating here:

(NPR 2210.1c paragraph 3.2.2.2) If a proposed release of open source software includes the
release of external open source software, care shall be taken to ensure that the pertinent
license for such external open source software is acceptable. For example, at least one
widely used external Open Source license does not currently include an indemnification
provision and further requires that all software distributed with that external open source
software be distributed under the same license terms.

Therefore, except for an Approved for Interagency Release or Approved for NASA Release,
both the Center Office or Project that is responsible for the software and Center Patent or
IP Counsel shall review and approve any proposed distribution of open source software
that includes external open source software.

Caution: open source software may itself contain other open source software!

Identifying and using high pedigree Open Source Software in NASA code
Going back to the NPR 7150.2A, requirement 2.3.1.e “The software component is verified and
validated to the same level of confidence as would be required of the developed software
component.” To achieve this level of confidence, it is recommended that software developers use

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=2210&s=1A

 NASA Software Engineering Handbook

35 Section: Use of Commercial, Government, Legacy Software

only OSS (and COTS, GOTS MOTS, Legacy as well) which has a high pedigree, i.e. a gold standard.
Such OSS will typically have the following characteristics:

 There should be a strong software development model including defined processes for:
o Bug reporting: identification, triage, and correction
o Code modification: review and approval to commit fixes and features to the source

code
o Testing, including thorough descriptions of test cases, test runs, and test

configurations
o Code review as part of the code modification process
o Documentation that is detailed and updated
o Discussion lists for questions: this may include a wiki, mailing list, or live chat site
o Leadership which ensures that the community works in a coordinated fashion to

define target functionality for each release and overall product focus.

 Usually, a high quality, established open source project will have a large number of
developers, Usage of the project’s product(s) will occur across multiple industries both
nationally and internationally.

 Metrics (e.g., number of developers) can be used to evaluate the quality of an Open Source
project via sites that track a large proportion of open source software projects (e.g.,
http://www.ohloh.net/). Norms, such as what constitutes a large number of developers,
change as the number of Open Source projects and developers grow.

 The project should provide a listing of all open source software included, embedded, or
modified within the piece of open source software.

Open source software may provide more opportunity to perform verification and validation of the
software to the same level of confidence as if obtained through a "development" process. Often
OSS project will provide online access to detailed development and test artifacts (as described
above), which may be difficult to obtain from COTS vendors.

Procurement of software by NASA – Open Source Provisions
A cautionary item from NPR 2210.1C, “Release of NASA Software”, is worth reiterating here:

[NPR 2210.1c paragraph 1.8.3] Open source software development, as defined in paragraph
A.1.1.8 [of NPR 2210.1C], may be used as part of a NASA project only if the Office or Project that
has responsibility for acquisition or development of the software supports incorporation of
external open source software into software. In addition, the Office or Project responsible for the
software acquisition or development shall:

a. Determine the ramifications of incorporating such external open source software during the
acquisition planning process specified in NASA FAR Supplement Subpart 1807.1, Acquisition Plans;
and

b. Consult with the Center Patent or IP Counsel early in the planning process (see 2.4.2.1) as the
license under which the open source software was acquired may negatively impact NASA’s
intended use.

http://www.ohloh.net/

NASA Software Engineering Handbook

Section: Use of Commercial, Government, Legacy Software 36

EMBEDDED OPEN SOURCE SOFTWARE
Embedded software applications written by/for NASA are commonly used by NASA for engineering

software solutions. Embedded software is software specific to a particular application as opposed

to general purpose software running on a desktop. Embedded software usually runs on custom

computer hardware (“avionics”), often on a single chip.

Care must b taken when using vendor supplied board support packages (BSPs) which are typically

supplied with off-the-shelf avionics systems. BSPs act as the software layer between the avionics

hardware and the embedded software applications written by/for NASA. Most CPU boards have

BSPs provided by the board manufacturer, or third parties working with the board manufacturer.

BSPs are hardware dependent, developed on hardware/software development tools which may not

be accessible years later. Risk mitigation should include hardware specific software such as BSPs,

software drivers, etc.

Many BSPs are provided by board manufacturers as binary code only, which could be an issue if

the BSP supplier is not available and BSP errors are found. It is recommended that a project using

BSPs maintain a configuration managed version of any BSPs with release dates and notes.

Vendor reports and user forums should be monitored from time of hardware and associated

software are purchased through a reasonable time after deployment. Developers should monitor

suppliers or user forums for bugs, workarounds, security changes, and other modifications to

software which, if unknown, could derail a NASA project. Consider the following snippet from a

user forum:

 [Manufacturer Pt. No.] motherboard embedded complex electronics contains

malware

Published: 2010-xx-xx

A [Manufacturer] support forum identifies [manufacturer‟s product]

motherboards which contain harmful code. The embedded complex

electronics for server management on some motherboards may contain

malicious code. There is no impact on either new servers or non-Windows

based servers. No further information is available regarding the malware,

malware mitigation, the serial number of motherboards affected, nor the source

of the original infection. [Manufacturer] will send snail mail and will call affected

customers.

 NASA Software Engineering Handbook

37 Section: Use of Commercial, Government, Legacy Software

REFERENCES
COTS Foundations: Essential Background and Terminology

By Sally J. F. Baron, International Public Procurement Conference Proceedings, 21-23
September 2006. This paper defines COTS by giving a comprehensive history, explaining
essential elements and defining terms and acronyms. It focuses on the recent history since
the landmark “Perry Memo” of 1994, to current progress. Important issues such as
intellectual property are also presented. The purpose of this paper is to provide a
background as well as a working reference for academics and government procurement
officials.

NASA Study on Flight Software Complexity

March, 2009. Commissioned by the NASA Office of Chief Engineer, Technical Excellence
Program, Adam West, Program Manager, and edited by Daniel L. Dvorak, Systems and
Software Division, Jet Propulsion Laboratory, this study reviews the mixed blessings of
COTS, Identifying and Minimizing Incidental FSW Complexity regarding COTS, COTs
integration risks, and COTS lifecycle cost risks.

The Commandments of COTS: Still in Search of the Promised Land, SEI, Carnegie Mellon

By David J. Carney and Patricia A. Oberndorf, Software Engineering Institute, Carnegie
Mellon University, May 1997.This article examines current government trends toward
using commercial-off-the-shelf (COTS) products. It discusses both the positive and the
negative effects of these trends and suggests some high-level issues for policy makers to
consider.

Decision Point: Will Using a COTS Component Help or Hinder Your DO-178B Certification
Effort?

 November 2003, CrossTalk - Journal of Defense Software Engineering, Timothy J. Budden,
AVISTA. Avionics software developers today are continually challenged to cut costs and
reduce time to market, without compromising the safety of their application. Many project
leaders look to commercial off-the-shelf (COTS) software components as a possible means
to reduce software development costs and development time. The requirements to
"prove" software quality under Defense Order (DO)-178B may be difficult, but the
opportunity demands consideration of COTS module integration where possible.
Understand what is certifiable, how to get the right information from your vendor, and the
importance of DO-178B traceability.

Added Sources of Costs in Maintaining COTS-Intensive Systems

June 2007, CrossTalk – Journal of Defense Software Engineering, Drs. Brad and Betsy Clark,
Software Metrics, Inc. . Ten years ago, work was begun at the Center for Systems and
Software Engineering at the University of Southern California to develop a cost model for
commercial off-the-shelf (COTS)-based software systems. A series of interviews were

http://www.ippa.ws/IPPC2/PROCEEDINGS/Article_5_Baron.pdf
http://nen.nasa.gov/files/FSWC_Final_Report.pdf
http://www.stsc.hill.af.mil/crosstalk/1997/05/commandments.asp
http://www.stsc.hill.af.mil/crosstalk/2003/11/0311budden.html
http://www.stsc.hill.af.mil/crosstalk/2003/11/0311budden.html
http://www.stsc.hill.af.mil/crosstalk/2007/06/0706clarkclark.html

NASA Software Engineering Handbook

Section: Use of Commercial, Government, Legacy Software 38

conducted to collect data to calibrate this model. A total of 25 project managers were
interviewed; for eight of these projects, data was collected during the original system
development and maintenance phases. A common sentiment heard from the people
maintaining these systems was that they turned out to be more expensive to maintain than
originally envisioned and, in fact, were more costly than a comparable custom-built system.
At the same time, several people expressed frustration about the difficulty of
communicating to upper management the reasons why COTS-based systems were so
expensive to maintain. Anecdotal evidence from these interviews is used to discuss the
added sources of maintenance cost. Three different approaches or strategies for system
maintenance were observed and are summarized in this article.

Sick of COTs acronyms? Mil/Aero blog by John McHale

January, 2008. John McHale, Executive editor of Military & Aerospace Electronics
magazine. This humorous blog gives a bit of history on the COTS, and other, acronyms.

COTS: Commercial Off-The-Shelf or Custom Off-The-Shelf?

June 2007, Wiley F. Livingston, Jr. P.E., Software Technology Support Center (STSC), Hill
AFB. A refreshing look at the cost and complexity of customizing an otherwise OTS product

Open-source vs. proprietary software bugs: Which get squashed fastest?

This article from CNET News, September 26, 2007, looks at which software is more robust,
in-house or COTS.

COTS Software Integration Cost Modeling Study

June 1997. From the University of Southern California Center for Software Engineering,
performed for the USAF Electronic Systems Center, this study represents a first effort
towards the goal of developing a comprehensive COTS integration cost modeling tool.

Researchers: Bugs in Open Source Software are waning

May 2008. By Jacqueline Emigh, Betanews. Developers of the Linux OS, Apache Web
server, and about 250 other different open source projects have removed more than 8,500
individual bugs from their code over the past two years, according to a study released this
week.

Open Source Licenses

Open Source Initiative, September, 2010. A list and some guidance for Open Source
Licenses

Working Effectively with Legacy Code, by Michael C. Feathers, ISBN 0-13-117705-2

Michael Feathers starts with legacy code defined as code without tests. He introduces
“Characterization testing” as an important concept and an essential tool for software

http://www.pennwellblogs.com/mae/2008/01/sick-of-cots-acronyms-yet.html
http://www.stsc.hill.af.mil/crosstalk/2007/06/0706BackTalk.html
http://news.cnet.com/8301-13505_3-9786034-16.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.1227&rep=rep1&type=pdf
http://www.betanews.com/article/Researchers-Bugs-in-open-source-software-are-waning/1211324896
http://www.opensource.org/licenses/category

 NASA Software Engineering Handbook

39 Section: Use of Commercial, Government, Legacy Software

developers dealing with legacy code. This is a highly recommended book if you are a
software developer or manager working with legacy code. Examples are given in C, C++, C#,
Ruby and Java.

Change-out: A system of systems approach to COTS management

IEEE Xplore, Sixth International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based
Software Systems (ICCBSS'07), 0-7695-2785-X/07, by Sally J. F. Baron, Ph.D, Management
Consulting. This paper examines such complexity, provides a visual framework for a system
of systems and the relevance and importance of change-out in general. From the Sixth
International IEEE Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems
(ICCBSS'07)

AIAA Guide for Managing the Use of Commercial off the Shelf (COTS) Software Components for
Mission-Critical Systems (G-118-2006e) (ONLINE)

The purpose of this Guide is to assist development and maintenance projects (teams and
individuals) that have to address the use of, or consideration of, COTS products within
large, complex systems, including but not limited to mission critical systems. This assistance
is provided by capturing a set of information about COTS products (benefits, risks,
recommended practices, lifecycle activity impacts) and mission critical systems (variety of
MCS, special needs for MCS, differences between MCS and other types of systems) and
then providing some linkage between these topics so that various types of stakeholders
can find useful information. The document should be of value to both management and
technical individuals/teams. It should also be of value to teams that are dealing with non-
MCS, in that the scope is not limited to only MCS.

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04127316
https://netforum.aiaa.org/eweb/DynamicPage.aspx?Action=Add&ObjectKeyFrom=1A83491A-9853-4C87-86A4-F7D95601C2E2&WebCode=ProdDetailAdd&DoNotSave=yes&ParentObject=CentralizedOrderEntry&ParentDataObject=Invoice%20Detail&ivd_formkey=69202792-63d7-4ba2-bf4e-a0da41270555&ivd_cst_key=00000000-0000-0000-0000-000000000000&ivd_prc_prd_key=4FBFBBC1-5790-436A-B966-4C6CB206B320
https://netforum.aiaa.org/eweb/DynamicPage.aspx?Action=Add&ObjectKeyFrom=1A83491A-9853-4C87-86A4-F7D95601C2E2&WebCode=ProdDetailAdd&DoNotSave=yes&ParentObject=CentralizedOrderEntry&ParentDataObject=Invoice%20Detail&ivd_formkey=69202792-63d7-4ba2-bf4e-a0da41270555&ivd_cst_key=00000000-0000-0000-0000-000000000000&ivd_prc_prd_key=4FBFBBC1-5790-436A-B966-4C6CB206B320

NASA Software Engineering Handbook

Section: Use of Commercial, Government, Legacy Software 40

LESSONS LEARNED WITH COTS, GOTS, MOTS, REUSED, OR OSS
The following lessons learned are taken primarily from the NASA Lessons Learned Database at the
NeN portal.

1. [The following information comes from the NASA Study on Flight Software Complexity
listed in the reference section of this document]

Summary: In 2007, a relatively new organization in DoD—the Software Engineering and
System Assurance Deputy Directorate—reported their findings on software issues based on
approximately 40 program reviews in the preceding 2½ years [Baldwin 2007]. They found
several software systemic issues that were significant contributors to poor program
execution. Among the seven listed were the following on COTS:

o Immature architectures, COTS integration, interoperability.
Later, in partnership with the NDIA, they identified the seven top software issues
that follow, drawn from a perspective of acquisition and oversight. Among the
seven listed were the following on COTS:

o Inadequate attention is given to total life cycle issues for COTS/NDI impacts on life
cycle cost and risk.
In partnership with the NDIA, they made seven corresponding top software
recommendations. Among the seven listed were the following on COTS:

o Improve and expand guidelines for addressing total life cycle COTS/NDI issues.

2. [The following information comes from the NASA Lessons Learned Repository at the NeN
portal]

Summary: The Shuttle Program selected off-the-shelf GPS and EGI units that met the
requirements of the original customers. It was assumed that off-the-shelf units with proven
design and performance would reduce acquisition costs and require minimal adaptation
and minimal testing. However, the time, budget and resources needed to test and resolve
firmware issues exceeded initial projections.

Details: see the NASA Lessons Learned Repository at the NeN portal,, Lesson 1370:
http://nen.nasa.gov/portal/site/llis/index.jsp?epi-
content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_co
ntent%2F1370.html&llknDocTitle=Lessons%20Learned%20Entry:%201370]

http://nen.nasa.gov/files/FSWC_Final_Report.pdf
http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1370.html&llknDocTitle=Lessons%20Learned%20Entry:%201370
http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1370.html&llknDocTitle=Lessons%20Learned%20Entry:%201370
http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1370.html&llknDocTitle=Lessons%20Learned%20Entry:%201370

 NASA Software Engineering Handbook

41 Section: Use of Commercial, Government, Legacy Software

3. [The following information comes from the NASA Lessons Learned Repository at the NeN
portal.] Summary: Lessons Learned Study Final Report for the Exploration Systems Mission
Directorate; Langley Research Center; August 20, 2004 had the following comments on
COTS:

Summary: There has been an increasing interest in utilizing commercially available
hardware and software as portions of space flight systems and their supporting
infrastructure. Experience has shown that this is a very satisfactory approach for some
items, and a major mistake for others. In general, COTS [products] should not be used as
part of any critical systems because of the generally lower level of engineering and product
assurance used in their manufacture and test. In those situations where COTS [software]
has been applied to flight systems, such as the laptop computers utilized as control
interfaces on International Space Station (ISS), the cost of modifying and testing the
hardware/software to meet flight requirements has far exceeded expectations, potentially
defeating the reason for selecting COTS products in the first place. In other cases, such as
the Checkout Launch Control System (CLCS) project at JSC, the cost of maintaining the
commercial software had not been adequately analyzed and drove the project’s recurring
costs outside the acceptable range.

Recommendation: Ensure that candidate COTS products are thoroughly analyzed for
technical deficiencies and life cycle cost implications before levying them on the program.

 COTS systems have potential to reduce system costs, but only if all of their
characteristics are considered beforehand and included in the planned application.
(Standards)

 COTS systems that look good on paper may not scale well to NASA needs for legitimate
reasons. These include sustaining engineering/update cycle/recertification costs,
scaling effects, dependence on third party services and products. Need to assure that a
life-cycle cost has been considered correctly. (HQ - CLCS)

Details: see the NASA Lessons Learned Repository at the NeN portal:
http://nen.nasa.gov/llis_lib/doc/1016526main_LL_Task_Final_Report.doc

http://nen.nasa.gov/llis_lib/doc/1016526main_LL_Task_Final_Report.doc

NASA Software Engineering Handbook

Section: Use of Commercial, Government, Legacy Software 42

4. [The following information comes from the NASA Lessons Learned Repository at the NeN
portal.]

Summary: The purpose of the Standard Autonomous File Server (SAFS) is to provide
automated management of large data files without interfering with the assets involved in
the acquisition of the data. It operates as a stand-alone solution, monitoring itself, and
providing an automated level of fail-over processing to enhance reliability. The successful
integration of COTS products into the SAFS system has been key to its becoming accepted
as a NASA standard resource for file distribution, and leading to its nomination for NASA's
Software of the Year Award in 1999.

Lessons learned: Match COTS tools to project requirements. Deciding to use a COTS
product as the basis of system software design is potentially risky, but the potential
benefits include quicker delivery, less cost, and more reliability in the final product. The
following lessons were learned in the definition phase of the SAFS/CSAFS development.

 Use COTS products and re-use previously developed internal products.
 Create a prioritized list of desired COTS features.
 Talk with local experts having experience in similar areas.
 Conduct frequent peer and design reviews.
 Obtain demonstration [evaluation] versions of COTS products.
 Obtain customer references from vendors.
 Select a product appropriately sized for your application.
 Choose a product closely aligned with your project's requirements.
 Select a vendor whose size will permit a working relationship.
 Use vendor tutorials, documentation, and vendor contacts during COTS evaluation

period.

Test and prototype COTS products in the lab.
The prototyping and test phase of the COTS evaluation allows problems to be identified as
the system design matures. These problems can be mitigated (often with the help and
cooperation of the COTS vendor) well before the field-testing phase at which time it may
be too costly or impossible to retrofit a solution. The following lessons were learned in the
prototyping and test phase of the SAFS/CSAFS development.

 Prototype your systems hardware and software in a lab setting as similar to the
field environment as possible;

o simulate how the product will work on various customer platforms
o model the field operations
o develop in stages with ongoing integration and testing

 Pass pertinent information on to your customers
 Accommodate your customers, where possible, by building in alternative options

 NASA Software Engineering Handbook

43 Section: Use of Commercial, Government, Legacy Software

 Don't approve all requests for additional options by customers or new projects that
come on line.

 Select the best COTS components for product performance even if they are from
multiple vendors.

 Consider the expansion capability of any COTS product
 Determine if the vendor’s support is adequate for your requirements

Install, operate and maintain the COTS field and lab components. The following lessons
were learned in the installation and operation phase of the SAFS/CSAFS development.

 Personally perform on-site installations whenever possible
 Have support/maintenance contracts for hardware and software through

development, deployment, and first year of operation
 Create visual representations of system interactions where possible.
 Obtain feedback from end users
 Maintain the prototype system after deployment
 Select COTS products with the ability to do internal logging

Details: see the NASA Lessons Learned Repository at the NeN portal, Lesson 1346:

http://nen.nasa.gov/portal/site/llis/index.jsp?epi-
content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_co
ntent%2F1346.html&llknDocTitle=Lessons%20Learned%20Entry:%201346

5. [The following information comes from the NASA Lessons Learned Repository at the NeN
portal]

Summary: Shortly after the commencement of science activities on Mars, the Mars
Exploration Rover (MER) lost the ability to execute any task that requested memory from
the flight computer. The cause was incorrect configuration parameters in two operating
system software modules that control the storage of files in system memory and flash
memory. Seven recommendations cover enforcing design guidelines for COTS software,
verifying assumptions about software behavior, maintaining a list of lower priority action
items, testing flight software internal functions, creating a comprehensive suite of tests
and automated analysis tools, providing downlinked data on system resources, and
avoiding the problematic file system and complex directory structure.

Recommendations:

 Enforce the project-specific design guidelines for COTS software, as well as for NASA-
developed software. Assure that the flight software development team reviews the
basic logic and functions of commercial off-the-shelf (COTS) software, with briefings
and participation by the vendor.

http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1346.html&llknDocTitle=Lessons%20Learned%20Entry:%201346
http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1346.html&llknDocTitle=Lessons%20Learned%20Entry:%201346
http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1346.html&llknDocTitle=Lessons%20Learned%20Entry:%201346

NASA Software Engineering Handbook

Section: Use of Commercial, Government, Legacy Software 44

 Verify assumptions regarding the expected behavior of software modules. Do not use a
module without detailed peer review, and assure that all design and test issues are
addressed.

 Where the software development schedule forestalls completion of lower priority
action items, maintain a list of incomplete items that require resolution before final
configuration of the flight software.

 Place high priority on completing tests to verify the execution of flight software internal
functions.

 Early in the software development process, create a comprehensive suite of tests and
automated analysis tools. Ensure that reporting flight computer related resource usage
is included.

 Ensure that the flight software downlinks data on system resources (such as the free
system memory) so that the actual and expected behavior of the system can be
compared.

 For future missions, implement a more robust version of the dosFsLib module, and/or
use a different type of file system and a less complex directory structure.

Details: see the NASA Lessons Learned Repository at the NeN portal, Lesson 1483

http://nen.nasa.gov/portal/site/llis/index.jsp?epi-
content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_co
ntent%2F1483.html&llknDocTitle=Lessons%20Learned%20Entry:%201483

6. [The following information comes from the NEN Lessons Learned Repository.]

Summary: International Space Station Lessons Learned as Applied to Exploration, KSC, July
22, 2009, had the following comments on COTS:

[23-Lesson]: Use Commercial Off-the-Shelf Products Where Possible
An effective strategy in the ISS program was to simplify designs by utilizing commercial off-
the-shelf (COTS) hardware and software products for non-safety, non-critical applications.
Application to Exploration: Use of COTS products should be encouraged whenever practical
in exploration programs.

Details: see the NASA Lessons Learned Repository at the NeN portal, at:
http://nen.nasa.gov/llis_lib/pdf/1022932main_ISSLessonsLearnedJuly2009.pdf

http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1483.html&llknDocTitle=Lessons%20Learned%20Entry:%201483
http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1483.html&llknDocTitle=Lessons%20Learned%20Entry:%201483
http://nen.nasa.gov/portal/site/llis/index.jsp?epi-content=LLKN_DOCUMENT_VIEWER&llknDocUrl=http%3A%2F%2Fnen.nasa.gov%2Fllis_content%2F1483.html&llknDocTitle=Lessons%20Learned%20Entry:%201483
http://nen.nasa.gov/llis_lib/pdf/1022932main_ISSLessonsLearnedJuly2009.pdf

 NASA Software Engineering Handbook

45 Section: Use of Commercial, Government, Legacy Software

7. [The following information is from Commercial Item Acquisition: Considerations and
Lessons Learned July 14, 2000, Office of the Secretary of Defense,]

Summary: This document is designed to assist DoD acquisition and supported commercial
items. It provides an overview of the considerations inherent in such acquisitions and
summarizes lessons learned from a wide variety of programs. Although it’s written with the
DoD acquirer in mind, it can provide useful information you r and assist you as we move
down this increasingly important path.

Details: see Commercial Item Acquisition: Considerations and Lessons Learned

http://www.acq.osd.mil/dpap/Docs/cotsreport.pdf
http://www.acq.osd.mil/dpap/Docs/cotsreport.pdf
http://www.acq.osd.mil/dpap/Docs/cotsreport.pdf

NASA Software Engineering Handbook

Section: Software Acquisition 46

Gateway to Web Handbook

Prototype: only the top link
works (view section on web)

This handbook is interactive!
Click on the links below to
connect to the web features:

 View this section on Web
 Comment on this section
 View this section‟s tags

 Download PDF of only this

section (smaller file)

4. Software Acquisition

PURPOSE
This section discusses guidance for projects implementing the
NPR 7150.2A requirements addressing software acquisition,
including SWE-033, SWE-037, SWE-038, SWE-045 through SWE-
048, and SWE-102. This guidance is intended for all persons
responsible for the software acquisition process from the
planning stages through contract close-out.

ROLES
Role Responsibility

Project Manager Approve procurement plan

Software Project Lead Prepare procurement plan, monitor execution of contract

System Engineer Conduct trade studies, engineering analyses

Contracting Officer (CO) Prepare contracts

Contracting Officer Technical
Representative (COTR)

Prepare contracts

Technical Authority Review SOW

PLANNING
Before software acquisition can be carried out, a need requiring a solution must be identified.
During the planning stage, various solutions to address the identified need are evaluated with the
following possible options:

 In-house development/service

 Contracted development/service

 Acquire OTS product

 Use/enhance existing product/service

If the solution to the need will involve software, NPR 7150.2A applies and the acquisition planning
guidance below should be applied:

1. If not already done, define the scope of the system of interest.
2. If not already done, identify the goals and objectives for the software portion of the

system.
3. Identify the technical requirements (functional, operational, performance).
4. Perform “make or buy” market research/trade studies to determine if an off-the-shelf

(OTS) solution exists:
o Establish criteria (and a plan) for the studies:

http://nasa7150.onconfluence.com/display/7150/Acquisition+Guidance

 NASA Software Engineering Handbook

47 Section: Software Acquisition

 Technical requirements
 NPR 7150.2A classification
 Constraints and limitations (cost, schedule, resources)
 Use past studies, known alternatives, existing make/buy criteria

o Conduct studies.
 Assess potential products and technologies
 Assess how well technical requirements are addressed
 Assess estimated costs, including support
 Identify risks (delivery, safety, development practices used by supplier,

supplier track record, etc.)
 Assess provider business stability, past performance, ability to meet

maintenance requirements, etc.
o Identify in-house capabilities to meet the need:

 Assess availability of existing products which could meet the need or be
modified to meet the need

 Assess availability of qualified personnel for development or modification
activities

 Assess estimated costs (time, personnel, materials, etc.), including support

 Use past projects as basis, where appropriate
 Identify risks

o Determine if solution will be custom made, an existing product, or a modified
existing product.

o Review COTS/GOTS/MOTS guidance in NPR 7150.2A handbook for additional
guidance and considerations.

5. Identify any acquisition risks based on requirements and “make or buy” decisions.
6. Document analysis:

o Expected classification of the software to be acquired
o Availability of in-house staff and funding resources
o Availability of the software product(s)
o Projected licensing and support costs
o List of potential suppliers
o Security considerations
o Potential risks related to supplier’s viability and past performance

7. Document solution choice and basis for that choice:
o Estimate of in-house vs. acquisition costs (including OTS solutions and any

associated costs for requirements not met by the OTS solution)
o Comparison of cost estimates to available funding
o Risk assessment
o Assumptions, observations, rationale, determining factors
o Significant issues, impacts of each option
o If solution is in-house development/service, exit this procedure
o If solution is to acquire product/service, continue tailoring as needed based on

development under contract or purchase OTS solution
o Other planning decisions resulting in best overall value to NASA

NASA Software Engineering Handbook

Section: Software Acquisition 48

o Description of chosen acquisition strategy
8. Identify stakeholders based on requirements and “make or buy” decisions:

o Those directly concerned with, or affected by, the acquisition decision.
o May include management, the project team, procurement, customers, end users,

and suppliers.
9. Report analysis and resulting decision to appropriate stakeholders.
10. Document lessons learned for future acquisition activities.
11. Develop acquisition schedule, including solicitation, supplier selection, supplier monitoring,

and product acceptance and transition to operations, as appropriate.
12. Develop acquisition plan using center-specific template.

SOLICITATION, SELECTION, AWARD
Once the planning activities for software acquisition have been completed and the decision has
been made to acquire the software or software development services, a selection process needs
to be followed to choose the best provider for the project. This process typically begins with
development of a Statement of Work (SOW). The following recommendations should be
considered as part of this process. Additionally, a SOW checklist is included in the Tools section of
this guidance document.

1. Develop solicitation, including SOW:

 Acceptance criteria

 Solicitation constraints

 Proper requirements from the software development perspective:
o Software classification (from NPR 7150.2A and safety criticality (from Software

Safety Litmus Test)
o Technical requirements
o Development standard to be followed, if any
o Development lifecycle to be followed, or indication that developer can choose

appropriate lifecycle
o Surveillance activities (and acquirer involvement) including monitoring

activities, reviews, audits, decision points, meetings, etc.
o Management and support requirements (project management, schedule and

schedule updates, configuration management, non-conformance and change
tracking, risk management, metrics collection, IV&V support, required records,
traceability records, electronic records and code access, V&V, etc.)

o Requirements for maintenance, support, updates, new versions, training to be
included in lifecycle and cost estimates

o Concise task and deliverable descriptions, including delivery format
o Media format for code deliverables
o Templates or Data Item Descriptions (DID) for documentation deliverables
o Complete set of deliverables with delivery dates, review periods, and

acceptance procedures for each
o Time period for responses to review findings, including making changes
o Data Requirements Documents for deliverables, if appropriate

 NASA Software Engineering Handbook

49 Section: Software Acquisition

o Government and contractor proprietary, usage, ownership, warranty, data, and
licensing rights, including transfer

o Requirement to include notice of use of open source software in developed
code

o OTS software requirements (identify which requirements are met by OTS
software, provide OTS software documentation such as usage instructions, etc.)

o List of all mandatory NASA software development standards and DIDs, as
applicable

2. Ensure proper review of SOW before delivery to procurement/contracts official:

 Technical Authority to ensure proper flow down of NPR 7150.2A requirements

 Coordinate with the Safety and Mission Assurance Office to ensure all QA
requirements, clauses, and intended delegations are identified and included

3. Identify potential suppliers.
4. Distribute solicitation package.
5. Evaluate proposals (typically an evaluation team), based on selection criteria, including:

 Evaluation of how well proposed solutions meet the requirements (including interface
and technology requirements, NPR 7150.2A requirements)

 Staff available

 Past performance

 Software engineering and management capabilities

 Prior expertise on similar projects

 Available resources (facilities, hardware, software, training, etc.)

 Etc.
6. Select supplier/contractor and document basis for selection.
7. Negotiate and finalize contract:

 Based on SOW

 Identify and include management reviews and meetings, such as:
o Formal reviews, such as those found in NPR 7123.1 and NPR 7120.4
o Technical reviews
o Progress reviews
o Peer reviews (see Peer Reviews and Inspection topic guidance in this

handbook)
o Software quality assurance meetings
o System integration test and verification meetings
o System safety meetings
o Configuration management meetings
o Etc.

 Consider for inclusion in contract provisions (description of the method to be used) for
verification of

o Contractor handling of requirements changes
o Accuracy of contractor transformation of high-level requirements into software

requirements and detailed designs

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7123&s=1A

NASA Software Engineering Handbook

Section: Software Acquisition 50

o Interface specifications between the contractor’s product and systems external
to it

o Adequacy of contractor’s risk management plan and its implementation in
accordance with the required activities in the project Software Risk
Management Plan

o Adequacy of the contractor’s integration and test plan and its implementation
in accordance with the required activities in the project Software Integration
and Test Plan

o Adequacy of the contractor’s configuration management plan and its
implementation in accordance with the required activities in the project
Software Configuration Management Plan

 Consider for inclusion in the contract the content and frequency of progress reports
and metrics submissions

 Consider for inclusion in the contract identification of quality records to be maintained
by the supplier

 Consider for inclusion in the contract the delivery process and how it will be
accomplished; if incremental development and delivery agreed upon, state how the
validation process works (e.g., incremental validation) and whether it requires
integration and test with software/hardware products developed by acquirer and/or
other contractors or organizations (other institutes, universities, etc.)

 Consider for inclusion in the contract a policy for maintaining the software after
delivery: who is responsible for maintenance of the software, tools, testbeds, and
documentation updates

MONITORING AND QUALITY ASSURANCE
Once the provider has been chosen, the acquisition process moves into a monitoring role. The
following guidance should be included when establishing the process for provider monitoring and
quality assurance:

1. Provide technical requirements interpretation for contractor.
2. Ensure contractor requirements documents meet original intent.
3. Evaluate contractor progress with respect to cost.
4. Periodically monitor contractor skill mix to ensure agreed-upon skills and experience levels

are being provided.
5. Oversee government-furnished equipment (GFE) to ensure equipment and information

provided in timely manner.
6. Periodically assess contractor processes to ensure conformance to process requirements

stated in the contract (NPR 7150.2A, CMMI models at specified level):

 Risk Management

 Software Configuration Management

 Software Quality Assurance

 Software IV&V&
7. Review and assess adequacy of contractor-provided documentation and ensure contractor

implementation of feedback.

 NASA Software Engineering Handbook

51 Section: Software Acquisition

 Consider using Formal Inspections.
8. Track status considering the following example questions:

 Is the contractor meeting their staffing plan?

 Have the project and the contractor met the user’s needs?

 Does the contractor have stable, educated staff?

 Does the contractor’s project have adequate resources (e.g., adequate staffing and
computer resources)?

 Is there realistic planning/budgeting in place?

 Is the build plan being met?

 Does the contractor have a good understanding of what is required?

 Are the requirements stable?

 Is the completion of designed functionality visible?

 Is the evolving capability and performance of the contractor’s product likely to impact
development on the acquirer side of the interface?

 Are integration and testing proceeding as planned?

 Is contractor cost/schedule performance on target?

 Is contractor developing a quality product?
9. Provide regular status reviews to higher-level management on contractor progress.
10. Regularly assess status of identified risks and provide reports during management reviews.

CONTRACT ADMINISTRATION
In addition to monitoring the selection provider’s progress and quality, contract administration
activities are also carried out for the project. The following guidance should be included when
establishing the process for contract administration:

1. Regularly assess contractor financial data and invoices against budget.
2. Work with Contracting Officer to ensure timely resolution of any contract-related issues.
3. Work with Contracting Officer to ensure timely address of needed modifications to

contract terms and conditions, as needed.

 Primarily those affecting schedule, costs, services/products, resources (people,
facilities), deliverables

4. Periodically evaluate contractor performance in manner consistent with contract and
provide documented evaluation to Contracting Officer.

NASA Software Engineering Handbook

Section: Software Acquisition 52

PRODUCT ACCEPTANCE AND CONTROL
Once the provider is ready to deliver the software product, the acquirer should have a process in
place for review and acceptance of the product. The following guidance should be included when
establishing the process for product acceptance:

1. Review deliverables based on agreed-upon acceptance criteria (or generally accepted
standards if no criteria established), document results, and work with contractor to resolve
acceptance issues.

 Typically, an acceptance test plan is created addressing the following:
o Acquirer and contractor roles and responsibility
o Defined Test Strategy
o Defined Test Objectives
o Defined Acceptance Criteria
o Developed Test Scenarios
o Developed Test Scripts
o Developed Test Matrix
o Time and Resources Estimate
o Approval Cycle
o Strategy for post-delivery problem resolutions

 Once approved, the test plan is executed and results are documented:
o Select Test Tools
o Select and Train Team Members
o Execute the Test Plan (Manual and Automated Methods)
o Track Test Progress
o Regression Test
o Document Test Results
o Resolve Problems

2. Place formal deliverables under configuration control.
3. After acceptance of delivered products, support transition to an operational and/or

maintenance environment.

CONTRACT CLOSE-OUT
Contract close-out is the final acquisition step. The following guidance should be included when
establishing the process for contract close-out:

1. Verify satisfaction of all contract terms and conditions, considering the following sample
questions:

 Has the contract period of performance expired (level of effort type contract)?

 Have all deliverables been delivered (completion type contract)?

 Have all Contract Data Requirements List (CDRL) Items been delivered and accepted?

 Was the contractor’s performance of the SOW acceptable?

 If the contract involved patent rights, has the final patent report been filed?

 Has the final invoice been received?
2. Verify return of all GFE, as appropriate.

 NASA Software Engineering Handbook

53 Section: Software Acquisition

3. Complete final reports as requested by Contracting Officer.
4. Provide final contractor performance evaluation to Contracting Officer.
5. Capture Lessons Learned, if not captured earlier in the project lifecycle.

USEFUL TOOLS
The documents below are tools collected from various Centers that work well and produce good
results. They are included here as aides for carrying out the software acquisition process.

Statement of Work Checklist
This checklist was taken directly from the Langley Research Center Statement of Work (SOW)
Review Procedure, LMS-CP-5523 Rev. B, and includes practices recognized by OCE as practices that
work very well for NASA. See the NASA Agency PAL for the latest version of this checklist, click
here for link on NEN:

https://nen.nasa.gov/web/software/nasa-software-process-asset-library-
pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-
2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2F
dsweb%2FGet%2FDocument-499443%2F5523_7-24-06_SOW_RevA_generic-R1V0.doc

Note: Items in gray text are provided as examples and explanatory guidance. For additional
guidance and examples on developing a Statement of Work see URL: http://sw-
eng.larc.nasa.gov/docs/statements_of_work.html and LPR 5000.2 “Procurement Initiator’s Guide,
Section 12 and 13.

Editorial Checklist
a. Is the SOW requirement in the form: “Who” shall “Do What”? E.g., “The Contractor shall

(perform, provide, develop, test, analyze, or other verb followed by a description of what).”
Example SOW requirements:

 − The Contractor shall design the XYZ flight software…
 − The Contractor shall operate the ABC ground system…
 − The Contractor shall provide maintenance on the following…
 − The Contractor shall report software metrics monthly …
 − The Contractor shall integrate the PQR instrument with the spacecraft…

b. Is the SOW requirement a simple sentence that contains only one requirement? Compound
sentences that contain more than one SOW requirement need to be split into multiple
simple sentences. (For example, “The Contractor shall do ABC and perform XYZ” should be
rewritten as: “The Contractor shall do ABC. The Contractor shall perform XYZ.”)

c. Is the SOW composed of simple, cohesive paragraphs, each covering a single topic?
Paragraphs containing many requirements should be divided into sub-paragraphs for clarity.

d. Has each paragraph and subparagraph been given a unique number or letter identifier? Is
the numbering / lettering correct?

e. Is the SOW requirement in the active rather than the passive voice? Passive voice leads to
vague statements. (For example, state: “The Contractor shall hold monthly management
review meetings…” instead of “Management review meeting shall be held monthly …”)

f. Is the SOW requirement stated positively as opposed to negatively? (i.e., replace statements
such as “The Contractor shall not exceed the budgetary limits specified…” with “The
contractor shall comply with the budgetary limits specified...”)

https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499443%2F5523_7-24-06_SOW_RevA_generic-R1V0.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499443%2F5523_7-24-06_SOW_RevA_generic-R1V0.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499443%2F5523_7-24-06_SOW_RevA_generic-R1V0.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499443%2F5523_7-24-06_SOW_RevA_generic-R1V0.doc
http://sw-eng.larc.nasa.gov/docs/statements_of_work.html
http://sw-eng.larc.nasa.gov/docs/statements_of_work.html

NASA Software Engineering Handbook

Section: Software Acquisition 54

g. Is the SOW requirement grammatically correct?
h. Is the SOW requirement free of typographic errors, misspellings, and punctuation errors?
i. Have all acronyms been defined in an Acronym List or spelled out in the first occurrence?
j. Have the quantities, delivery schedules, and delivery method been identified for each

deliverable within the SOW or a separate attachment/section?
k. Has the content of documents to be delivered been defined in a separate

attachment/section and submitted with the SOW?
l. Has the file format of each electronic deliverable been defined? (e.g., Microsoft – Project,

Adobe – Acrobat PDF, National Instruments – Labview VIs)

Content Checklist
a. Are correct terms used to define the requirements?

1. Shall = requirement (binds the contractor)
2. Should = goal (leaves decision to contractor; avoid using this word)
3. May = allowable action (leaves decision to contractor; avoid using this word)
4. Will = facts or declaration of intent by the Government (use only in referring to the

Government)
5. Present tense (e.g., “is”) = descriptive text only (avoid using in requirements

statements; use “shall” instead)
6. NEVER use ‘must’

b. Is the scope of the SOW clearly defined? Is it clear what you are buying?
c. Is the flow and organizational structure of the document logical and understandable? (See

LPR 5000.2 “Procurement Initiator’s Guide”, Section 12 for “helpful hints”.) Is the text
compatible with the title of the section it’s under? Are sub-headings compatible with the
subject matter of a heading?

d. Is the SOW requirement clear and understandable?
1. Can the sentence only be understood one way?
2. Will all terminology used have the same meaning to different readers without

definition? Has any terminology for which this is not the case been defined in the SOW?
(e.g., in a Definitions section or Glossary.)

3. Is it free from indefinite pronouns (“this”, “that”, “these”, “those”) without clear
antecedents? (e.g., replace statements such as “These shall be inspected on an annual
basis.” with “The fan blades shall be inspected on an annual basis.”)

4. Is it stated concisely?
e. Have all redundant requirements been removed? Redundant requirements can reduce

clarity, increase ambiguity, and lead to contradictions.
f. Is the requirement consistent with other requirements in the SOW, without contradicting

itself, without using the same terminology with different meanings, without using different
terminology for the same thing?

g. If the SOW includes the delivery of a product (as opposed to just a services SOW):
1. Are the technical product requirements in a separate section or attachment, apart from

the activities that the contractor is required to perform? The intent is to clearly
delineate between the technical product requirements and requirements for activities
the contractor is to perform. (E.g., separate SOW statements “The contractor shall”

 NASA Software Engineering Handbook

55 Section: Software Acquisition

from technical product requirement statements such as “The system shall” and “The
software shall”.)

2. Are references to the product and its sub-elements in the SOW at the level described in
the technical product requirements?

3. Is the SOW consistent with and does it use the same terminology as the technical
product requirements?

h. Is the SOW requirement free of ambiguities? Make sure the SOW requirement is free of
vague terms. (For example, “as appropriate”, “any”, “either”, “etc.”, “and/or”, “support”,
“necessary”, “but not limited to”, “be capable of”, “be able to”)?

i. Is the SOW requirement verifiable? Make sure the SOW requirement is free of unverifiable
terms. For example, “flexible”, “easy”, “sufficient”, “safe”, “ad hoc”, “adequate”,
“accommodate”, “user-friendly”, “usable”, “when required”, “if required”, “appropriate”,
“fast”, “portable”, “light-weight”, “small”, “large”, “maximize”, “minimize”, “optimize”,
“sufficient”, “robust”, “quickly”, “easily”, “clearly”, other “ly” words, other “ize” words.

j. Is the SOW requirement free of implementation constraints? SOW requirements should
state WHAT the contractor is to do, NOT HOW they are to do it. For example, “The
Contractor shall design the XYZ flight software” states WHAT the contractor is to do, while
“The Contractor shall design the XYZ software using object-oriented design” states HOW the
contractor is to implement the activity of designing the software. In addition, too low a level
of decomposition of activities can result in specifying how the activities are to be done,
rather than what activities are to be done.

k. Is the SOW requirement stated in such a way that compliance with the requirement is
verifiable? Does a means exist to measure or otherwise assess its accomplishment? Can a
method for verifying compliance with the requirement be defined (e.g., described in a
Quality Assurance Surveillance Plan)?

l. Is the background material clearly labeled as such (i.e., included in the background section
of the SOW if one is used)?

m. Are the assumptions able to be validated and restated as requirements? If not, the
assumptions should be deleted from the SOW. Assumptions should be recorded in a
document separate from the SOW.

n. Is the SOW complete, covering all of the work the contractor is to do?
1. Are all of the activities necessary to develop the product included? (E.g., system,

software, and hardware activities for the following: requirements, architecture, and
design development; implementation and manufacturing; verification and validation;
integration testing and qualification testing.)

2. Are all safety, reliability, maintainability (e.g., mean time to restore), availability, quality
assurance, and security requirements defined for the total life of the contract?

3. Does the SOW include a requirement for the contractor to have a quality system (e.g.,
ISO certified), if one is needed?

4. Are all of the necessary management and support requirements included in the SOW?
(For example, project management; configuration management; systems engineering;
system integration and test; risk management; interface definition and management;
metrics collection, reporting, analysis and use; acceptance testing; NASA Independent
Verification and Validation support tasks.)

NASA Software Engineering Handbook

Section: Software Acquisition 56

5. Are clear Performance Standards included and sufficient to measure contractor
performance? (e.g., systems, software, hardware, and service performance standards
for the following: schedule, progress, size, stability, cost, resources, and defects.) See
Guidance on System and Software Metrics for Performance-Based Contracting at:
http://sw-eng.larc.nasa.gov/docs/statements_of_work.html for more information and
examples on Performance Standards.

6. Are all of the necessary service activities included? (For example, transition to
operations, operations, maintenance, database administration, system administration,
data management.)

7. Are all of the Government surveillance activities included? (For example, project
management meetings; decision points; requirements and design peer reviews for
systems, software, and hardware; demonstrations; test readiness reviews; other
desired meetings (e.g., Technical Interchange Meetings); collection and delivery of
metrics for systems, software, hardware, and services (e.g. to provide visibility into
development progress and cost); electronic access to technical and management data;
access to subcontractors and other team members for the purposes of
communication.)

8. Are the Government requirements for contractor inspection and testing addressed, if
necessary?

9. Are the requirements for contractor support of Government acceptance activities
addressed, if necessary?

o. Does the SOW only include contractor requirements? It should not include Government
requirements.

p. Does the SOW give the contractor full management responsibility and hold them
accountable for the end result?

q. Is the SOW sufficiently detailed to permit a realistic estimate of cost, labor, and other
resources required to accomplish each activity?

r. Are all deliverables identified (e.g., status, financial, product deliverables)? The following are
examples of deliverables that are sometimes overlooked: management and development
plans; technical progress reports that identify current work status, problems and proposed
corrective actions, and planned work; financial reports that identify costs (planned, actual,
projected) by category (e.g., software, hardware, quality assurance); products (e.g., source
code, Maintenance/User Manual, test equipment); and discrepancy data (e.g., defect
reports, anomalies). All deliverables should be specified in a separate document except for
technical deliverables which should be included in the SOW (e.g. hardware, software,
prototypes, etc.).

s. Does each technical and management deliverable track to a paragraph in the SOW? Each
deliverable should have a corresponding SOW requirement for its preparation (e.g., the
SOW identifies the title of the deliverable in parenthesis after the task requiring the
generation of the deliverable).

t. Are all reference citations complete?
1. Is the complete number, title, and date or version of each reference specified?
2. Does the SOW reference the standards and other compliance documents in the proper

SOW paragraphs?

 NASA Software Engineering Handbook

57 Section: Software Acquisition

3. Is the correct reference document cited and is it referenced at least once?
4. Is the reference document either furnished with the SOW or available at a location

identified in the SOW?
5. If the referenced standard or compliance document is only partially applicable, does

the SOW explicitly and unambiguously reference the portion that is required of the
contractor?

Critical and/or Complex Requirements Checklist
Note: The checklist items below may be duplicative of items included earlier in this Appendix but are
summarized here to specifically identify what is required for critical and/or complex procurements.

a. Does the SOW include the name or identification of all critical and/or complex items (i.e.,
specifications [e.g. IEEE Standards, NFPA Standards], drawings, process requirements [e.g.
LMS-CPs], inspection instructions, and other relevant technical data, as applicable)?

b. Are the requirements for design, test, examination, inspection, and related instructions for
acceptance by the Government included in the SOW where applicable?

c. Are the requirements for test specimens (e.g. production method, number, storage
conditions) included in the SOW if applicable? These specimens could be used by the
Government for design approval, inspection, investigation or auditing.

Example Templates: The following NASA Data Item Descriptions (DIDs) are listed as sample
templates for the documentation templates called for during the solicitation portion of the
software acquisition process. Center Process Asset Libraries (PALs) should be consulted for DIDs
and Data Requirements Documents (DRDs) relevant to a specific NASA center.

NASA-STD-2100-91
NASA DIDs are defined in the NASA-STD-2100-91 Software Documentation Standard, which is
available at http://satc.gsfc.nasa.gov/assure/docstd.html. The NASA DIDs provide a format for a
documentation set, including what needs to be addressed in each section.

MASTER DOCUMENTATION DATA ITEM DESCRIPTIONS

 NASA-DID-000 Software Documentation Set DID

 NASA-DID-999 Template DID

MANAGEMENT PLAN DATA ITEM DESCRIPTIONS

 NASA-DID-M000 Management Plan DID

 NASA-DID-M100 Acquisition Activities Plan DID

 NASA-DID-M200 Development Activities Plan DID

 NASA-DID-M210 Training Development Plan DID

 NASA-DID-M300 Sustaining Engineering and Operations Activities Plan DID

 NASA-DID-M400 Assurance Plan DID

 NASA-DID-M500 Risk Management Plan DID

 NASA-DID-M600 Configuration Management Plan DID

 NASA-DID-M700 Delivery and Operational Transition Plan DID

http://satc.gsfc.nasa.gov/assure/docstd.html

NASA Software Engineering Handbook

Section: Software Acquisition 58

PRODUCT SPECIFICATION DATA ITEM DESCRIPTIONS

 NASA-DID-P000 Product Specification DID

 NASA-DID-P100 Concept DID

 NASA-DID-P200 Requirements DID

 NASA-DID-P300 Architectural Design DID

 NASA-DID-P400 Detailed Design DID

 NASA-DID-P410 Firmware Support Manual DID

 NASA-DID-P500 Version Description DID

 NASA-DID-P600 User's Guide DID

 NASA-DID-P700 Operational Procedures Manual DID

ASSURANCE AND TEST PROCEDURES DATA ITEM DESCRIPTIONS

 NASA-DID-A000 Assurance and Test Procedures DID

 NASA-DID-A100 Assurance Procedures DID

 NASA-DID-A200 Test Procedures DID

MANAGEMENT, ENGINEERING, AND ASSURANCE REPORTS DATA ITEM DESCRIPTIONS

 NASA-DID-R000 Management, Engineering, and Assurance Reports DID

 NASA-DID-R001 Certification Report

 NASA-DID-R002 Audit Report

 NASA-DID-R003 Inspection Report

 NASA-DID-R004 Discrepancy (NRCA) Report

 NASA-DID-R005 Engineering Change Proposal

 NASA-DID-R006 Lessons Learned Report F-10

 NASA-DID-R007 Performance/Status Reports

 NASA-DID-R008 Assurance Activity Report

 NASA-DID-R009 Test Report

 NASA-DID-R010 Waiver/Deviation Request

 NASA-DID-R011 Review Report

Center DIDs and DRDs
The following DIDs and DRDs are samples available from center PALs. Consult your own center
PAL for templates relevant to work performed for your center.

Marshall Space Flight Center Templates
Available from http://spi.msfc.nasa.gov/templates.html and the individual Project Asset sections
of the Marshall Space Flight Center PAL.

 Software Configuration Management Plan

 Software Test Report (STR) Template

 Unit Test Procedure Template

http://spi.msfc.nasa.gov/templates.html

 NASA Software Engineering Handbook

59 Section: Software Acquisition

Goddard Space Flight Center Templates
Available from http://software.gsfc.nasa.gov/ispaindx.cfm.

 Software Management Plan/Product Plan (SMP/PP) for Class A, B, & C Software

 ISD Software Management Plan/Product Plan (SMP/PP) for Class D&E Software

 Version Description Document

 Template for the Software Quality Assurance Plan

 Configuration Management Plan Template

 Other templates in progress or not available publicly

REFERENCES
1. Software Acquisition Statement of Work Guideline, SEPG-SWACQ-PRC-1, Glenn Research

Center.
a. https://nen.nasa.gov/web/software/nasa-software-process-asset-library-

pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col
_id=column-
2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.a
rc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499288%2FSoftware%2BAcquisition%2BSOW%2BGuideline.doc

2. Prepare Presolicitation Documents, LMS-OP-4509, Langley Research Center.
3. Statement of Work (SOW) Review Procedure, LMS-CP-5523, Langley Research Center.
4. Product Requirements Development and Management Procedure, LMS-CP-5526, Langley

Research Center.
5. Process for Conducting a Make/Buy Analysis, 580-SP-075-01, Goddard Space Flight Center.
6. WBS Checklist Tool, Goddard Space Flight Center.
7. Software Supplier Agreement Management Plan, Jet Propulsion Laboratory.

a. https://nen.nasa.gov/web/software/nasa-software-process-asset-library-
pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col
_id=column-
2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.a
rc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-
499361%2FJPL%2BSoftware%2BSupplier%2BAgreement%2BManagement%2BPlan%2B%28SSAMP%29%2BTemplate%2B%280
4-15-02%29.doc

8. Software Assurance: Five Essential Considerations for Acquisition Officials, Mary Linda
Polydys, Stan Wisseman, STSC Crosstalk, July 2005

9. A Method for Reasoning About an Acquisition Strategy, Mary Catherine Ward, Joseph P.
Elm, Software Engineering Institute (SEI), 2005

10. Software Acquisition Best Practices: 2004 Edition, Adams, Eslinger, Owens, Rich, 3rd OSD
Conference on the Acquisition of Software-Intensive Systems

http://software.gsfc.nasa.gov/ispaindx.cfm
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499288%2FSoftware%2BAcquisition%2BSOW%2BGuideline.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499288%2FSoftware%2BAcquisition%2BSOW%2BGuideline.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499288%2FSoftware%2BAcquisition%2BSOW%2BGuideline.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499288%2FSoftware%2BAcquisition%2BSOW%2BGuideline.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499288%2FSoftware%2BAcquisition%2BSOW%2BGuideline.doc
http://software.gsfc.nasa.gov/AssetsApproved/PA2.1.1.1.doc
http://software.gsfc.nasa.gov/toolsDetail.cfm?selTool=1.2.4.0
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499361%2FJPL%2BSoftware%2BSupplier%2BAgreement%2BManagement%2BPlan%2B%28SSAMP%29%2BTemplate%2B%2804-15-02%29.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499361%2FJPL%2BSoftware%2BSupplier%2BAgreement%2BManagement%2BPlan%2B%28SSAMP%29%2BTemplate%2B%2804-15-02%29.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499361%2FJPL%2BSoftware%2BSupplier%2BAgreement%2BManagement%2BPlan%2B%28SSAMP%29%2BTemplate%2B%2804-15-02%29.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499361%2FJPL%2BSoftware%2BSupplier%2BAgreement%2BManagement%2BPlan%2B%28SSAMP%29%2BTemplate%2B%2804-15-02%29.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499361%2FJPL%2BSoftware%2BSupplier%2BAgreement%2BManagement%2BPlan%2B%28SSAMP%29%2BTemplate%2B%2804-15-02%29.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499361%2FJPL%2BSoftware%2BSupplier%2BAgreement%2BManagement%2BPlan%2B%28SSAMP%29%2BTemplate%2B%2804-15-02%29.doc
https://nen.nasa.gov/web/software/nasa-software-process-asset-library-pal?p_p_id=webconnector_WAR_webconnector_INSTANCE_PA7b&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-2&p_p_col_count=1&_webconnector_WAR_webconnector_INSTANCE_PA7b_edu.wisc.my.webproxy.URL=https%3A%2F%2Fnx.arc.nasa.gov%2Fnx%2Fdsweb%2FGet%2FDocument-499361%2FJPL%2BSoftware%2BSupplier%2BAgreement%2BManagement%2BPlan%2B%28SSAMP%29%2BTemplate%2B%2804-15-02%29.doc

NASA Software Engineering Handbook

Section: Transition of Software to a Higher Classification 60

Gateway to Web Handbook

Prototype: only the top link
works (view section on web)

This handbook is interactive!
Click on the links below to
connect to the web features:

 View this section on Web
 Comment on this section
 View this section‟s tags

 Download PDF of only this

section (smaller file)

5. Transition of Software to a Higher Classification

PURPOSE
This document addresses guidance for projects that desire to

transition software from a lower to a higher classification. This

guidance is provided for Technical Authorities to provide a process

for determining:

 if the transition activity is within acceptable risk boundaries

and, if so,

 what strategy is needed to complete the transition to the

higher classification.

ROLES
Role Responsibility

Technical Authority Reviews and approves transition strategy, waivers

Software Project Lead Review requirements gap, document transition strategy,
write waiver requests, carry out transition strategy

Original Software Author Provide documentation, code, other artifacts, and insights
into software considered for transition

Software Assurance Ensure transition strategy is carried out

TRANSITION CATEGORIES
 Non-flight to non-flight (E->D)

 Non-flight to flight (E -> C, B, or A; D ->C, B, or A)

 Flight to Flight (C-> B or A; B->A)

Greatest risk exists for software that crosses the flight boundary and for software making large

transitions, so those projects must be analyzed with the greatest care.

PREPARATION
Before transition risk or a strategy can be determined, the Software Project Lead should work with

the original author of the software to obtain the basic information upon which that determination

will be based and make it available to the Technical Authority:

 Original software proposed for transition

 Artifacts of original software development

 Description of new environment / project where transitioned software will be used

http://nasa7150.onconfluence.com/display/7150/Transitioning+to+a+higher+class

 NASA Software Engineering Handbook

61 Section: Transition of Software to a Higher Classification

PROCESS OVERVIEW
This process diagram includes the roles with primary responsibility for carrying out each activity or

decision. While the named roles have primary responsibility for the activity, the actual completion

of the activity will involve other roles as needed or in compliance with center standards.

DETERMINE PRELIMINARY TRANSITION RISK
Before choosing a transition strategy, it is important for the Technical Authority to determine if
the transition effort is within acceptable risk boundaries or if new development is a less risky
solution. The following questions should be considered when evaluating transition versus new
development solutions. Some of these topics are addressed in more detail in later analysis steps.

1. Is this a new project, midstream change of an existing project, or transition of an older,
completed project?

2. What was the classification and safety criticality of the software to be transitioned? What
is the higher classification and safety criticality?

a. A larger gap, e.g., non-safety critical Class E to safety-critical Class B, means a larger
number of new requirements to fulfill.

NASA Software Engineering Handbook

Section: Transition of Software to a Higher Classification 62

b. The larger the gap, the more likely that the new requirements will need to be met
as opposed to being tailored or waived.

c. If the gap is too large, e.g., non-safety critical Class E to safety-critical Class A, the
amount of work to close the gap may simply be too large to consider and
transitioning is not a viable option.

3. Will the software operate in a different environment at the higher classification? If so, is
the software appropriate to be used in the new environment? If so, what changes are
needed to support this environment (hardware and software interfaces, etc.)?

4. Do software artifacts/documentation exist and can they be built upon for the transitioned
software or must artifacts/documentation be created from scratch?

5. Do personnel have sufficient knowledge and skills related to the prior development to
support a transition effort? What additional training is needed?

6. What are the trade-offs of coding from scratch vs. transitioning the existing work?
7. Does this preliminary assessment cause the transition to fall outside the bounds of

acceptable risk which would result in abandonment of the transition?

DETERMINE REQUIREMENTS GAP
Once the Technical Authority has deemed the transition effort is within acceptable risk
boundaries, the Software Project Lead has the following primary responsibilities:

 Ensure the project begins to adhere to the requirements for the higher classification and
safety criticality as this will begin to reduce the existing requirements gap

 Determine the NPR 7150.2A requirements gap between the original software classification
and safety criticality and the higher classification and safety criticality

The requirements gap is input to the transition strategy activity below.

To determine the requirements gap, use the NPR 7150.2A compliance matrix to determine:

1. Which requirements were met by the software when it was developed
2. Which requirements must be met for the higher classification and safety criticality
3. Which requirements that were met in the original software must be met at a more rigorous

level at the higher classification
4. What is the delta number of old requirements to new ones

DETERMINE TRANSITION STRATEGY
Once the NPR 7150.2 requirements gap has been determined, a strategy for accomplishing the
transition needs to be developed and documented. The Software Project Lead should develop this
strategy with input from the Software Assurance organization that will be part of the group
responsible for ensuring the transition strategy is carried out. Development of the transition
strategy may involve a requirement by requirement review. Additionally, review and approval of
the strategy and the associated risk is the responsibility of the Technical Authority.

 NASA Software Engineering Handbook

63 Section: Transition of Software to a Higher Classification

During this process, new information may be identified that shows the transition risk is no longer
acceptable. In that case, the Technical Authority can determine that transition is no longer within
the acceptable risk boundaries and stop the transition attempt.

The questions below should be considered when establishing the transition strategy.

Evaluation of Additional Requirements

1. Which requirements become more significant at the higher classification? Consider:
a. Safety requirements
b. Risk reduction requirements
c. Software assurance requirements
d. Requirements for reaction to adverse conditions (data, system, environmental, etc.)
e. Requirements for required functionality
f. Other

2. Which requirements are candidates to be waived?
a. What are the tradeoffs of not doing the higher level requirement(s)?
b. What are the risks of doing/not doing the higher level requirement(s)?
c. What requirements do not make sense to retroactively fulfill or provide little added

value, e.g., due to phase of project development?
3. Which requirements will be tailored?

a. Which requirements must be retroactively applied (e.g., peer reviews) and which
requirements will be applied only to remaining work (e.g., cost estimates)?

4. Process-related requirements (e.g., configuration management, planning) should already
be met, but should be checked to confirm completeness for higher level classification
requirements.

a. Are there products that need to be placed under CM that weren’t for the lower
class?

b. Is the schedule and cost estimate up-to-date and detailed enough for the higher
level classification?

c. What new metrics need to be collected to meet requirements as well as to benefit
future transition efforts?

d. What processes need to be updated to meet the higher classification requirements,
e.g., peer reviews, stakeholder reviews, audits)?

5. Does this effort cause the transition to fall outside the bounds of acceptable risk?

Documentation Needed

1. What is state/status of existing documentation?
a. Review documents as well as existing change requests, inspection / peer review

reports, etc. to determine state and quality of documentation.
a. What new material/content and revisions will be necessary to meet the higher

requirements?
b. To what depth will the new content need to go to meet the higher level

requirements?

NASA Software Engineering Handbook

Section: Transition of Software to a Higher Classification 64

2. What new documentation will be required to meet all of the higher requirements and to
what depth/rigor?

3. Does this effort cause the transition to fall outside the bounds of acceptable risk?

Software Modifications Needed

1. What is the status of the software? Can it be used “as is” or do parts of the software
require modification?

a. Review existing change requests, inspection / peer review reports, test reports, etc.
to determine state and quality of software.

b. What code (to meet new requirements such as redundancy) or documentation
(design, comments, etc.) must be added to fulfill the higher requirements? What is
size of anticipated code modifications versus original code size?

i. If size of modifications is significantly greater than size of original code,
risk could be higher than coding from scratch.

c. What new standards, e.g., coding standards, must be implemented / met by the
code to fulfill the higher requirements?

d. What non-essential code (“bells & whistles”, test hooks, “dead” code, etc.) should
be removed to conform to higher level requirements?

e. If not already performed or data is not current, conduct static analysis to identify
existing errors in the code, identify missing pieces of the code, generate complexity
data, etc.

2. What is the status of the verification and validation (V&V) activities?
a. Has V&V been performed on the software to be transitioned?
b. Are existing V&V results invalidated by the new environment or application?
c. What new or revised/more rigorous V&V activities (analysis, tests, results

documentation, etc.) will be needed to fulfill the higher requirements?
d. Are there areas of the project that are more safety-critical or higher risk and will

require focused V&V effort at the higher level classification?
e. If code modifications are needed, what V&V activities are required for those

modifications?
3. Does this effort cause the transition to fall outside the bounds of acceptable risk?

Resources Needed

1. What resources (people, time, budget, etc.) are available for the transition effort?
a. Are there tools and/or methods/techniques that could reduce the required effort

and still provide the appropriate level of documentation? Examples:
i. Doxygen to document design of existing code

ii. Model-based tools to check requirements completeness
iii. Model-based tools to check design completeness

b. In-house personnel or contractors, i.e., are new or renegotiated contracts or
internal agreements needed to support the transition effort?

2. What additional resources are needed?
a. What additional personnel are needed, e.g., software assurance, IV&V, etc.?
b. What new tools and/or equipment are needed, e.g., for V&V?

 NASA Software Engineering Handbook

65 Section: Transition of Software to a Higher Classification

c. Are there any new skills needed, e.g., new tools or coding techniques, needed to
meet higher level requirements?

3. Does the resource needs cause the transition to fall outside the bounds of acceptable risk?

NASA Software Engineering Handbook

Section: Transition of Software to a Higher Classification 66

REFERENCES

Reference Documentation Table

This table provides guidance on what documentation a project will need to develop for software
that will be reused, in whole or in part, from a previous development effort. The documentation to
be developed depends on the classification of the project that will be using the software, and on
decisions made by the project as to which documents are necessary based on NASA center
procedures.

Software Documentation

Class A
OR
Class A
Safety
Critical

Class B
OR
Class B
and
Safety
Critical

Classes C
thru E
and
Safety
Critical

Class C
and NOT
Safety
Critical

Class D
and NOT
Safety
Critical

Class F
(In-
house)

Class G
(In-house)

Software Management Plan 1 1 1 1 1 1 1

Software Configuration Management Plan 1 1 1 1 1 1 1

Software Test Plan 1 1 1 1 1 1 1

Software Maintenance Plan 1 1 1 1 1

Software Assurance Plan 1 1 1 1 1 1

Software Safety Plan 1 1 1 1 1 1 1

Software Requirements Specification 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4

Software Data Dictionary 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4

Software Design Description 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4

Interface Design Description 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4

Software Change Request/Problem Report 1 1 1 1 1 1 1

Software Test Procedures 2 2 2 2 2 2

Software Users Manual 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4

Software Version Description 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4 2, 3, or 4

Software Metrics Report 1 1 1 1 1 1

Software Test Report 2 2 2 2 2 2

Software Inspection/Peer Review Report 1 1 1 1 1 1

Key:
1. Project already responsible for developing this document; it needs to address integration of the

transitioning software
2. Develop the document if it does not exist
3. Modify the project/document to accommodate the transitioning software
4. Incorporate existing document into the project
Note: A blank space indicates that the document does not need to be developed.

Classes E and H do not appear in the table since they are the lowest classifications. It is not possible to
transition up to either of them. Documents with multiple keys allow for decisions to be made in the best
interest of the project. A block with 2, 3 or 4 in it gives the project three options. For instance, a
requirements document can be developed as a standalone document if it does not exist or the
requirements can be included in another of the project’s requirements documents or, if the requirements
document exists, it can be directly incorporated into the project.

 NASA Software Engineering Handbook

67 Section: Transition of Software to a Higher Classification

Reference Code Size Decision Chart

Decision making for software transition involves detailed investigation of the subject code and of
the resources available to apply to its modification or rebuilding. The following chart provides
some guidance with respect to code size, noting that Mod Size should only reflect modification
within the original code, not any code to which the original software will be linked. This table on
the next page should be tailored even further depending on the nature of the code’s language,
local experience with the programming languages involved, and availability of alternate language
development resources.

 Size of Existing Code

Size of
Modifications

Small Big

Small

Determine size of original code plus the modifications.
If the determined size is big, write new code from scratch,
following Center procedures and project plans. Exit this process.
If the size is small then:
Analyze and determine risk based on:
• Relative size of original code to mod size,
• Comparison of Specialized resources needed/available:
• Reuse: reduced effort, but older language skills/maintenance
required.
• Re-code: increased effort, but newer language
skills/capabilities avail.
• State of the original code:
(less of these items requires more resource to validate original
code and assure to higher control level)
• Documentation available
• Known reliability/applicability/readability
Evaluate the risk.
If the risk is acceptable, reuse original code. Perform mods if
needed. Follow Center procedures and project plans. Continue
with this process.
If the risk is not acceptable, write new code from scratch,
following Center procedures and project plans. Exit this process.

Reuse original code. Perform mods if needed. Follow GLPR-
7150.1 and project plans. Continue with this process.

Big
Write new code from scratch following Center procedures and
project plans. Exit this process.

Analyze and determine risk based on:
• Relative size of original code to mod size,
• Comparison of Specialized resources needed/available:

• Reuse: reduced effort, but older language
skills/maintenance required.
• Re-code: increased effort, but newer language
skills/capabilities are available.

• State of the original code
(if few of these items exist, more resources required to
validate original code and assure to higher classification level):

• Documentation available
• Known reliability/applicability/readability

Evaluate the risk.
If the risk is acceptable, reuse original code. Perform mods if
needed. Follow Center procedures and project plans. Continue
with this process.
If the risk is not acceptable, write new code from scratch. Exit
this process.

NASA Software Engineering Handbook

Section: Validation Planning - SWE-029 68

Gateway to Web Handbook

Prototype: only the top link
works (view section on web)

This handbook is interactive!
Click on the links below to
connect to the web features:

 View this section on Web
 Comment on this section
 View this section‟s tags

 Download PDF of only this

section (smaller file)

6. Validation Planning - SWE-029

REQUIREMENTS
2.4.2 The project shall plan the software validation activities,

methods, environments, and criteria for the project.

NOTES
 Software validation is a software engineering activity that shows

confirmation that the software product, as provided (or as it will

be provided), fulfills its intended use in its intended environment.

In other words, validation ensures that "you built the right thing."

Examples of validation methods include but are not limited to:

formal reviews, prototype demonstrations, functional demonstrations, software testing, software

peer reviews/inspections of software product component, behavior in a simulated environment,

acceptance testing against mathematical models, analyses, and operational environment

demonstrations. Refer to the software plan requirements for software validation planning and

incorporation (NPR 7150.2A, Chapter 5).

IMPLEMENTATION NOTES FROM APPENDIX D
Class D non-Safety Critical and Class G are labeled with “P(Center)”. This means that local

requirements or procedures describe validation planning sufficiently to meet the intent of this

requirement.

APPLICABILITY ACROSS CLASSES
This requirement applies to all classes and safety criticalities except:

 Class E and not Safety Critical

 Class H

RATIONALE
Planning should be applied to any activity that is to be repeated, that needs to be verified before

use, and that requires thought before implementation. Planning the requirements validation

activity allows the project team to put more thought into tasks, methods, environments, and

related criteria before they are implemented. Planning also allows a current project to improve

based on lessons learned from previous projects, including using more appropriate or efficient

techniques and ensuring the completeness of all steps in the process.

Having a plan also allows the requirements validation activity to be reviewed, improved, and

verified before it is implemented to ensure the outcome will meet the expectations and goals of

http://nasa7150.onconfluence.com/display/7150/SWE-029
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7150_002A_&page_name=Chapter5

 NASA Software Engineering Handbook

69 Section: Validation Planning - SWE-029

the validation activity. Planning also helps to ensure the validation activity is cost-efficient and

timely.

GUIDANCE
The basic validation process is shown below with the steps addressed by this requirement

highlighted:

Validation activities should not be performed in an ad hoc manner, but should be planned and

captured in a validation plan document. The validation plan is typically part of a verification and

validation (V&V) plan, a software V&V plan (SVVP), or is included in the Software Management /

Development Plan (SMP/SDP).

The plan should cover the validation activities that will occur at various times in the development

lifecycle including:

 During requirements development, validation is accomplished by bringing in the customer

and outside people for a review of the requirements, e.g., focus groups, requirements

reviews, etc.

 During design, validation occurs when the customers have a chance to view prototypes of

the product or pieces of the product, e.g., focus groups, user groups, etc.

 During implementation, validation occurs when team members review software

components for adherence to requirements, e.g., peer reviews/inspections.

 Prior to delivery, validation occurs when customers see the completed product function in

a nearly operational environment, e.g., acceptance testing, operational demonstrations,

etc.

 During product use, validation occurs when the product is used in the operational

environment in the way the customer expects it to be used.

The project team should review the plan and validation results at various lifecycle reviews,

particularly whenever requirements change throughout the duration of the project. Any identified

issues should be captured in problem reports / change requests / action items and resolved before

the requirements are used as the basis for development activities.

NASA Software Engineering Handbook

Section: Validation Planning - SWE-029 70

The validation plan will address more than just validation of software requirements. It should

include a schedule, especially if stakeholder reviews are required to complete the validation

activities and gain agreement that the requirements are a correct and acceptable description of

the system or software to be implemented. Other elements to include in the overall plan:

 Scope

 Approach

 Resources

 Specific tasks and activities

 Validation methods and criteria (SWE-102)

 Identification of work products to be validated (SWE-102)

 Identification of where validation records and corrective actions will be captured (SWE-
102)

The Scope and Approach sections of the plan should identify the project and define the purpose

and goals of the plan including responsibilities, assumptions, and a summary of the efforts

described in the plan.

Resources include personnel, environments such as simulators, facilities, tools, etc. and should

include any skills and/or training necessary for those resources to carry out the validation

activities.

When developing the validation plan, consider the following for inclusion:

 Identifying the key functions and/or components that require validation (based on
criticality, safety, security, etc.)

 Identifying the validation methods, techniques, tests to carry out the validation activities
for components as well as the system as a whole (see SWE-055)

 Identifying criteria by which success will be measured for each validation activity

 Establishing the target environment (which could be a high fidelity simulation) for
validating the software or system, including validation of tools used in those environments

 Identifying how the results will be documented and reported, when and to whom they will
be reported (see SWE-031)

 Issue resolution (capture and tracking to closure) for issues or findings identified during
validation activities (could be as simple as using the project configuration management
process) (see SWE-031)

 Identifying validation activities, as applicable, to occur during the various lifecycle phases

 Re-validation plans to accommodate changes as the system is developed

 Method for obtaining customer approval of the validation plan, if applicable

If not part of the team developing the validation plan, Software Assurance should be part of the

plan’s review team to ensure the plan meets all assurance requirements.

 NASA Software Engineering Handbook

71 Section: Validation Planning - SWE-029

See also related requirements in this handbook:

SWE-031 Validation results

SWE-055 Requirements validation

SWE-102 Software development/management plan

SMALL PROJECTS
There is no information applicable to this section.

RESOURCES
1. Software Management Plan / Product Plan (SMP/PP) For Class A, B & C Software

(Verification and Validation section), 580-TM-033-02, GSFC,

http://software.gsfc.nasa.gov/AssetsApproved/PA1.2.6.1.doc

2. IEEE Standard for Software Verification and Validation. Chapter 7., IEEE Std 1012-2004

3. IEEE Guide for Software Verification and Validation Plans. IEEE Std 1059-1993

4. How to Develop A Software Validation Plan, O’Keeffe, August 2010

5. FSW Testbed Validation Description, 582-2008-006, Version 1, GSFC, 2008

6. The CMMi easy button presentation of CMMi – Validation (VAL), Software Quality

Assurance.org

7. Reference Information for the Software Verification and Validation Process, NIST Special

Publication 500-234, 1996

TOOLS
Software Verification and Validation Plan (SVVP) Template (based on IEEE standards), Texas State

University Computer Science Department, 2001

LESSONS LEARNED
There are currently no Lessons Learned listed for this requirement.

http://software.gsfc.nasa.gov/AssetsApproved/PA1.2.6.1.doc
http://www.effectivearticlemarketing.com/how-to-develop-a-software-validation-plan/
http://software.gsfc.nasa.gov/AssetsApproved/PA2.5.1.3.2.doc
http://www.software-quality-assurance.org/cmmi-validation.html
http://hissa.ncsl.nist.gov/HHRFdata/Artifacts/ITLdoc/234/val-proc.html
http://www.cs.txstate.edu/~js55/SVVPLAN.pdf

NASA Software Engineering Handbook

Section: Acquisition vs. Development Assessment - SWE-033 72

Gateway to Web Handbook

Prototype: only the top link
works (view section on web)

This handbook is interactive!
Click on the links below to
connect to the web features:

 View this section on Web
 Comment on this section
 View this section‟s tags

 Download PDF of only this

section (smaller file)

7. Acquisition vs. Development Assessment - SWE-033

REQUIREMENTS
2.5.2 The project shall assess options for software acquisition

versus development.

Notes
The assessment can include risk, cost, and benefits criteria for

each of the options listed below:

 Acquire an off-the-shelf software product that satisfies the

requirement.

 Develop the software product or obtain the software

service internally.

 Develop the software product or obtain the software service through contract.

 Enhance an existing software product or service.

Risks are considered in software make/buy and acquisition decisions. The project needs to ensure

that software products used in the design or support of human space flight components or systems

include a level of rigor in risk mitigation as a software management requirement, regardless of

software classification. The level of documentation needed for risk identification and tracking is

defined by the Center processes.

Implementation Notes from Appendix D
NPR 7150.2A does not include any notes for this requirement.

Applicability Across Classes
This requirement applies to all classes and safety criticalities except:

 Class E and not Safety Critical

 Class H

RATIONALE
When making any decision, it is important to assess the options available in order to obtain the

greatest value and benefit. Software development is no different. Choices need to be assessed in

order to identify the best use of available resources (budget, time, personnel, etc.) to address a

defined and scoped need while providing the greatest benefit with the least risk to the project.

GUIDANCE
When assessing solutions for software acquisition versus development, there are four possible

options:

 Acquire an off-the-shelf software product that satisfies the requirement.

http://nasa7150.onconfluence.com/display/7150/SWE-033

 NASA Software Engineering Handbook

73 Section: Acquisition vs. Development Assessment - SWE-033

 Develop the software product or obtain the software service internally.

 Develop the software product or obtain the software service through contract.

 Enhance an existing software product or service.

Each option has its own benefits, costs, and risks which should be identified through market

studies (for off-the-shelf products), internal assessments (for existing products), and cost-benefit

analyses.

The team should assess existing software products, whether off-the-shelf or in-house, to identify

how well they meet the need of the current project and whether they are suitable for the intended

environment. The following information should be weighed against the defined need, architecture,

environment, requirements, safety classification, budget, etc. of the current project:

 Features/functionality/capabilities

 Documentation

 Test results

 Performance record

 Safety record

 Licensing, maintenance, and support costs

 Any other relevant information

The project responsible for procuring off-the-shelf software is responsible for documenting, prior to

procurement, a plan for verifying and validating the off-the-shelf software to the same level of

confidence that would be needed for an equivalent class of software if obtained through a

"development" process. For more detail, see SWE-027.

For development, whether internal or external, consider the following information:

 Personnel skill sets, experience, availability

 Cost associated with training, tools, post-development maintenance and support

 Company reputation, track record, history, etc. (for contracted development)

 Overall cost of development

 Intellectual Property rights

 Cost and availability of workforce should follow-on work be required

 Insight into development processes

 Schedule associated with procurement (sole source, competitive, task order, etc.) for

procured software or a contracted development

Identify risks associated with each assessed option, including:

 Technical risks

 Supplier risks, including track record and support risks

 Cost and schedule risks

NASA Software Engineering Handbook

Section: Acquisition vs. Development Assessment - SWE-033 74

The team should document the results of the analysis as well as the raw data that was collected

and evaluated to arrive at the final solution.

Involve the right stakeholders in the assessment process to benefit from their experience and

ensure all key information is considered. Consider the following, as applicable:

 Technical personnel

 Management

 Contracts

 Procurement

 End users

 Customers

 Technical Authority

See the Acquisition Guidance topic in this handbook for additional guidance on this topic. The

references in this topic may also provide additional guidance on assessing acquisition versus

development options.

Additionally, center procedures addressing decision analysis and resolution may be helpful in

planning and carrying out the assessment and selection process.

Small Projects
While assessing all available options is important for any software development project, it may be

even more important for projects with limited budgets, personnel, or both. Small projects need to

evaluate their available resources against the possible solutions to find the best fit with the least

risk.

Use of existing trade studies and market analyses may reduce the cost and time of assessing

available options.

RESOURCES
 Process for Conducting a Make/Buy Analysis, 580-SP-075-01, Goddard Space Flight

Center (GSFC), http://software.gsfc.nasa.gov/AssetsApproved/PA2.1.1.1.doc

 ISD Decision Analysis and Resolution, 580-SP-038-001, GSFC,

http://software.gsfc.nasa.gov/AssetsApproved/PA2.1.1.pdf

 See Acqusition Guidance section in this document.

Tools
Checklists of questions to ask when assessing acquisition versus development can be found in

SWE-027 of this handbook

LESSONS LEARNED
Several lessons learned from the NASA Lessons Learned database

(http://www.nasa.gov/offices/oce/llis/1370.html) address topics that should be kept in mind when

http://software.gsfc.nasa.gov/AssetsApproved/PA2.1.1.1.doc
http://software.gsfc.nasa.gov/AssetsApproved/PA2.1.1.pdf
http://www.nasa.gov/offices/oce/llis/1370.html

 NASA Software Engineering Handbook

75 Section: Acquisition vs. Development Assessment - SWE-033

assessing software acquisitions versus development. While many of these lessons seem

hardware-oriented, some of these lessons can also be applied to software:

1. Talk to those that have used the product before. Outside consultants, who do not have a stake

in the choice of a particular unit, should be used. Such consultants have “hands on experience”

… and can be an important information source concerning their design, integration and use.

Consultants who have participated in previous integrations will have knowledge of problems

that other users have encountered. Consultants and other users can also provide valuable

insight into the rationale and requirements that governed the original design of the unit. This

information is invaluable … for identifying technical, cost and schedule risks associated with a

particular … unit ...

2. “Plug And Play” versus development. The fact that a unit is in mass production and is a proven

product does not mean that its integration into a different vehicle will be a simple, problem free

“plug and play” project. A difference in application (such as aviation versus space flight) will

result in the manifestation of firmware issues that may not have appeared in the original

application. Unique data interfaces used by manned and some unmanned spacecraft avionics

may require modification of the unit. Power supply changes and radiation hardening may also

have to be performed. While this lesson describes hardware acquisitions, software acquisitions

should also keep this lesson in mind because projects have differences that can affect the

suitability of software for a particular application.

3. Pay attention to “Technical Risk”. Project management may focus mainly on risk to cost and

schedule, with little attention paid to technical risk. GPS project management kept Shuttle

Program management well aware of the nature of a “success oriented” approach and that cost

and schedule could be impacted. Analysis at the start of a project should be conducted to

determine risk to cost and schedule based on the technology level, the maturity of the

technology and the difference between the planned application and the application for which

the box was designed originally. Software complexity should also be examined. Failure to

account for technical risk can lead to cost and schedule problems.

An additional risk in using “off the shelf” units concerns the availability of the vendor. Can a

user continue to use and maintain a product if the vendor goes out of business or stops

producing and supporting the product?

4. Provide guidelines for COTS and “Faster-Better-Cheaper” implementation. A key lesson from

unmanned spacecraft failures and DoD software programs is that one must understand how to

properly use COTS products and apply “faster-better-cheaper” principles.

Some projects have failed since management was not given guidance concerning how to

implement a faster-better-cheaper approach. “Faster” and “cheaper” are easily understood, but

“better” is difficult to define. This has also led to inconsistent application of faster-better-

cheaper principles from one project to another.

NASA Software Engineering Handbook

Section: Acquisition vs. Development Assessment - SWE-033 76

A COTS policy is needed to help prevent cost, schedule and technical difficulties from

imperiling projects that use COTS. Criteria for determining whether a COTS approach can be

taken must be determined. Of prime importance is defining the level of insight needed into

vendor software, software maintenance and certification processes.

Problems in COTS projects can arise when requirements are levied on the product that the

vendor did not originally intend for the unit to meet. Using COTS may mean either

compromising requirements on the COTS unit or on the integrated system. Whether or not new

requirements have to be applied to the unit is a critical decision. Unfortunately, new

requirements may not be recognized until the COTS product experiences difficulties in the

testing and integration phases of the project.

The Shuttle Program created COTS/MOTS software guidelines for varying levels of application

criticality. This recommended policy defines what considerations should be made before

deciding to procure a COTS/MOTS product. The following should be examined based on the

criticality (impact of failure on safety of flight or mission success) of the application and product

in question:

 Certification Plan – How much of the vendors in-house certification can be relied upon?
For critical applications, additional testing will be needed if access to test results, source
code and requirements documents is not allowed. Can the unit be certified to a level
commensurate with the criticality of the application?

 Vendor Support – This should cover the certification process and the system life cycle.
The level of support should be defined based on the criticality of the system.

 Product Reliability – Vendor development and certification processes for both hardware
and software should be examined.

 Trade Studies – Define “must meet,” “highly desirable” and “nice to have” requirements.
Ability of the unit to meet those requirements, and at what cost, will be a major deciding
factor in the COTS decision. Identify loss of operational and upgrade flexibility as well
technical risks and cost associated with the product. Examine the impact of the product on
the integrated system, including hardware and software interface changes. Compare the
proposed COTS products to a custom developed product. Assess life expectancy of the
product and its track record in the market place.

 Risk Mitigation – Identify areas that increase risk, such as lack of support if the vendor
goes out of business or the product is no longer produced. Ensuring vendor support over
the product life cycle can mitigate risk, along with gaining access to source code, design
requirements, verification plans and test results. Off-line simulations of the product should
also be considered. Can access be obtained to vendor information on product issues
discovered by other users?

Trade studies and risk identification must be performed before committing to the use of a

particular unit and integration architecture.

	1. Introduction
	How is this different than any other NASA handbook?
	Gateway to Web Handbook
	Special Topic Material
	Material by SWE Requirement Number
	What‘s in Release 0.1C?
	Contributors

	2. Lifecycle Review Entry/Exit Criteria Guidance
	Mission Concept Review (MCR)
	/Entrance Criteria
	/Exit/Success Criteria

	Systems Requirements Review (SRR)
	/Entrance Criteria
	/Exit/Success Criteria

	Software Requirements Review (SwRR)
	/Entrance Criteria
	/Exit/Success Criteria

	Mission Definition Review (MDR)
	/Entrance Criteria
	/Exit/Success Criteria

	System Definition Review (SDR)
	/Entrance Criteria
	/Exit/Success Criteria

	Preliminary Design Review (PDR)
	/Entrance Criteria
	/Exit/Success Criteria

	Critical Design Review (CDR)
	/Entrance Criteria
	/Exit/Success Criteria

	Production Readiness Review (PRR)
	Entrance Criteria
	/Exit/Success Criteria

	System Integration Review (SIR)
	/Entrance Criteria
	/Exit/Success Criteria

	Test Readiness Review (TRR)
	/Entrance Criteria
	/Exit/Success Criteria

	System Acceptance Review (SAR)
	/Entrance Criteria
	/Exit/Success Criteria

	Operational Readiness Review (ORR)
	/Entrance Criteria
	/Exit/Success Criteria

	Flight Readiness Review (FRR)
	/Entrance Criteria
	/Exit/Success Criteria

	3. Use of Commercial, Government, Legacy Software
	Requirements
	Guidance
	Rationale
	COTS/GOTS Software
	MOTS Software
	Legacy/Heritage Code
	Open Source Software
	What is Open Source Software?
	Planning ahead for the inclusion of Open Source Software
	Releasing NASA code containing Open Source Software
	Identifying and using high pedigree Open Source Software in NASA code
	Procurement of software by NASA – Open Source Provisions

	Embedded Open Source Software
	References
	Lessons Learned with COTS, GOTS, MOTS, Reused, or OSS

	4. Software Acquisition
	Purpose
	Roles
	Planning
	Solicitation, Selection, Award
	Monitoring and Quality Assurance
	Contract Administration
	Product Acceptance and Control
	Contract Close-Out
	Useful Tools
	Statement of Work Checklist
	Editorial Checklist
	Content Checklist
	Critical and/or Complex Requirements Checklist
	NASA-STD-2100-91
	Center DIDs and DRDs

	References

	5. Transition of Software to a Higher Classification
	Purpose
	Roles
	Transition Categories
	Preparation
	Process Overview
	Determine Preliminary Transition Risk
	Determine Requirements Gap
	Determine Transition Strategy
	Evaluation of Additional Requirements
	Documentation Needed
	Software Modifications Needed
	Resources Needed

	References
	Reference Documentation Table
	Reference Code Size Decision Chart

	6. Validation Planning - SWE-029
	Requirements
	Notes
	Implementation Notes from Appendix D
	Applicability Across Classes
	Rationale
	Guidance
	Small Projects
	Resources
	Tools
	Lessons Learned

	7. Acquisition vs. Development Assessment - SWE-033
	Requirements
	Notes
	Implementation Notes from Appendix D
	Applicability Across Classes

	Rationale
	Guidance
	Small Projects

	Resources
	Tools

	Lessons Learned

